# -*- coding: utf-8 -*- """ Created on Wed Jul 19 17:54:00 2017 @author: sgnosh """ #!/usr/bin/python import sys import os import cv2 import numpy as np print('\nDeeptextdetection.py') print(' A demo script of text box alogorithm of the paper:') print(' * Minghui Liao et al.: TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://arxiv.org/abs/1611.06779\n') if (len(sys.argv) < 2): print(' (ERROR) You must call this script with an argument (path_to_image_to_be_processed)\n') quit() #if not cv2.text.cnn_config.caffe_backend.getCaffeAvailable(): # print"The text module was compiled without Caffe which is the only available DeepCNN backend.\nAborting!\n" # # quit() # check model and architecture file existance if not os.path.isfile('textbox.caffemodel') or not os.path.isfile('textbox_deploy.prototxt'): print " Model files not found in current directory. Aborting" print " Model files should be downloaded from https://github.com/sghoshcvc/TextBox-Models" quit() cv2.text.cnn_config.caffe_backend.setCaffeGpuMode(True); pathname = os.path.dirname(sys.argv[0]) img = cv2.imread(str(sys.argv[1])) textSpotter=cv2.text.textDetector_create( "textbox_deploy.prototxt","textbox.caffemodel") rects,outProbs = textSpotter.textDetectInImage(img); # for visualization vis = img.copy() # Threshold to select rectangles : All rectangles for which outProbs is more than this threshold will be shown thres = 0.6 #Visualization for r in range(0,np.shape(rects)[0]): if outProbs[r] >thres: rect = rects[r] cv2.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (255, 0, 0), 2) # cv2.rectangle(vis, (rect[0],rect[1]), (rect[0]+rect[2],rect[1]+rect[3]), (255, 255, 255), 1) #Visualization cv2.imshow("Text detection result", vis) cv2.waitKey(0)