/* * Software License Agreement (BSD License) * * Copyright (c) 2009, Willow Garage, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Willow Garage, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #include #include using namespace cv; using namespace std; using namespace cv::cnn_3dobj; int main(int argc, char** argv) { const String keys = "{help | | this demo will convert a set of images in a particular path into leveldb database for feature extraction using Caffe.}" "{src_dir | ../data/images_all/ | Source direction of the images ready for being converted to leveldb dataset.}" "{src_dst | ../data/dbfile | Aim direction of the converted to leveldb dataset. }" "{attach_dir | ../data/dbfile | Path for saving additional files which describe the transmission results. }" "{channel | 1 | Channel of the images. }" "{width | 64 | Width of images}" "{height | 64 | Height of images}" "{caffemodel | ../data/3d_triplet_iter_10000.caffemodel | caffe model for feature exrtaction.}" "{network_forDB | ../data/3d_triplet_galleryIMG.prototxt | Network definition file used for extracting feature from levelDB data, causion: the path of levelDB training samples must be wrotten in in .prototxt files in Phase TEST}" "{save_feature_dataset_names | ../data/feature/feature_iter_10000.bin | Output of the extracted feature in form of binary files together with the vector features as the feature.}" "{extract_feature_blob_names | feat | Layer used for feature extraction in CNN.}" "{num_mini_batches | 4 | Batches suit for the batches defined in the .proto for the aim of extracting feature from all images.}" "{device | CPU | Device: CPU or GPU.}" "{dev_id | 0 | ID of GPU.}" "{network_forIMG | ../data/3d_triplet_testIMG.prototxt | Network definition file used for extracting feature from a single image and making a classification}" "{mean_file | ../data/images_mean/triplet_mean.binaryproto | The mean file generated by Caffe from all gallery images, this could be used for mean value substraction from all images.}" "{label_file | ../data/dbfileimage_filename | A namelist including all gallery images.}" "{target_img | ../data/images_all/2_13.png | Path of image waiting to be classified.}" "{num_candidate | 6 | Number of candidates in gallery as the prediction result.}"; cv::CommandLineParser parser(argc, argv, keys); parser.about("Demo for Sphere View data generation"); if (parser.has("help")) { parser.printMessage(); return 0; } string src_dir = parser.get("src_dir"); string src_dst = parser.get("src_dst"); string attach_dir = parser.get("attach_dir"); int channel = parser.get("channel"); int width = parser.get("width"); int height = parser.get("height"); string caffemodel = parser.get("caffemodel"); string network_forDB = parser.get("network_forDB"); string save_feature_dataset_names = parser.get("save_feature_dataset_names"); string extract_feature_blob_names = parser.get("extract_feature_blob_names"); int num_mini_batches = parser.get("num_mini_batches"); string device = parser.get("device"); int dev_id = parser.get("dev_id"); string network_forIMG = parser.get("network_forIMG"); string mean_file = parser.get("mean_file"); string label_file = parser.get("label_file"); string target_img = parser.get("target_img"); int num_candidate = parser.get("num_candidate"); cv::cnn_3dobj::DataTrans transTemp; transTemp.convert(src_dir,src_dst,attach_dir,channel,width,height); std::vector feature_reference = transTemp.feature_extraction_pipeline(caffemodel, network_forDB, save_feature_dataset_names, extract_feature_blob_names, num_mini_batches, device, dev_id); ////start another demo cv::cnn_3dobj::Classification classifier(network_forIMG, caffemodel, mean_file, label_file); std::cout << std::endl << "---------- Prediction for " << target_img << " ----------" << std::endl; cv::Mat img = cv::imread(target_img, -1); // CHECK(!img.empty()) << "Unable to decode image " << target_img; std::cout << std::endl << "---------- Featrue of gallery images ----------" << std::endl; std::vector > prediction; for (unsigned int i = 0; i < feature_reference.size(); i++) std::cout << feature_reference[i] << endl; cv::Mat feature_test = classifier.feature_extract(img, false); std::cout << std::endl << "---------- Featrue of target image: " << target_img << "----------" << endl << feature_test.t() << std::endl; prediction = classifier.Classify(feature_reference, img, num_candidate, false); // Print the top N prediction. std::cout << std::endl << "---------- Prediction result(distance - file name in gallery) ----------" << std::endl; for (size_t i = 0; i < prediction.size(); ++i) { std::pair p = prediction[i]; std::cout << std::fixed << std::setprecision(2) << p.second << " - \"" << p.first << "\"" << std::endl; } return 0; }