/* * Copyright (c) 2024 Qualcomm Innovation Center, Inc. All rights reserved. * SPDX-License-Identifier: Apache-2.0 */ #include "test_precomp.hpp" namespace opencv_test { namespace { typedef std::tuple PyramidTestParams; class PyramidTest : public ::testing::TestWithParam { }; TEST_P(PyramidTest, accuracy) { auto par = GetParam(); bool useFloat = std::get<0>(par); int nLevels = std::get<1>(par); bool scaleBy2 = std::get<2>(par); cv::Mat src = imread(cvtest::findDataFile("cv/shared/baboon.png"), cv::IMREAD_GRAYSCALE); if (useFloat) { cv::Mat f; src.convertTo(f, CV_32F); src = f; } std::vector pyr; cv::fastcv::buildPyramid(src, pyr, nLevels, scaleBy2); ASSERT_EQ(pyr.size(), (size_t)nLevels); std::vector refPyr; if (scaleBy2) { cv::buildPyramid(src, refPyr, nLevels - 1); } else // ORB downscaling { for (int i = 0; i < nLevels; i++) { // we don't know how exactly the bit-accurate size is calculated cv::Mat level; cv::resize(src, level, pyr[i].size(), 0, 0, cv::INTER_AREA); refPyr.push_back(level); } } for (int i = 0; i < nLevels; i++) { cv::Mat ref = refPyr[i]; cv::Mat m = pyr[i]; ASSERT_EQ(m.size(), ref.size()); double l2diff = cv::norm(m, ref, cv::NORM_L2); double linfdiff = cv::norm(m, ref, cv::NORM_INF); double l2Thresh = scaleBy2 ? 178.0 : 5216.0; double linfThresh = scaleBy2 ? 16.0 : 116.0; EXPECT_LE(l2diff, l2Thresh); EXPECT_LE(linfdiff, linfThresh); } if (cvtest::debugLevel > 0) { for (int i = 0; i < nLevels; i++) { char tchar = useFloat ? 'f' : 'i'; std::string scaleStr = scaleBy2 ? "x2" : "xORB"; cv::imwrite(cv::format("pyr_diff_%c_%d_%s_l%d.png", tchar, nLevels, scaleStr.c_str(), i), cv::abs(pyr[i] - refPyr[i])); } } } INSTANTIATE_TEST_CASE_P(FastCV_Extension, PyramidTest, // useFloat, nLevels, scaleBy2 ::testing::Values( PyramidTestParams { true, 2, true}, PyramidTestParams { true, 3, true}, PyramidTestParams { true, 4, true}, PyramidTestParams {false, 2, true}, PyramidTestParams {false, 3, true}, PyramidTestParams {false, 4, true}, PyramidTestParams {false, 2, false}, PyramidTestParams {false, 3, false}, PyramidTestParams {false, 4, false} )); typedef std::tuple SobelPyramidTestParams; class SobelPyramidTest : public ::testing::TestWithParam {}; TEST_P(SobelPyramidTest, accuracy) { auto p = GetParam(); int type = std::get<0>(p); size_t nLevels = std::get<1>(p); // NOTE: test files should be manually loaded to folder on a device, for example like this: // adb push fastcv/misc/bilateral_recursive/ /sdcard/testdata/fastcv/bilateral/ cv::Mat src = imread(cvtest::findDataFile("cv/shared/baboon.png"), cv::IMREAD_GRAYSCALE); std::vector pyr; cv::fastcv::buildPyramid(src, pyr, nLevels); std::vector pyrDx, pyrDy; cv::fastcv::sobelPyramid(pyr, pyrDx, pyrDy, type); ASSERT_EQ(pyrDx.size(), nLevels); ASSERT_EQ(pyrDy.size(), nLevels); for (size_t i = 0; i < nLevels; i++) { ASSERT_EQ(pyrDx[i].type(), type); ASSERT_EQ(pyrDx[i].size(), pyr[i].size()); ASSERT_EQ(pyrDy[i].type(), type); ASSERT_EQ(pyrDy[i].size(), pyr[i].size()); } std::vector refPyrDx(nLevels), refPyrDy(nLevels); for (size_t i = 0; i < nLevels; i++) { int stype = (type == CV_8S) ? CV_16S : type; cv::Mat dx, dy; cv::Sobel(pyr[i], dx, stype, 1, 0); cv::Sobel(pyr[i], dy, stype, 0, 1); dx.convertTo(refPyrDx[i], type, 1.0/8.0, 0.0); dy.convertTo(refPyrDy[i], type, 1.0/8.0, 0.0); } for (size_t i = 0; i < nLevels; i++) { cv::Mat ref, dst; double normInf, normL2; ref = refPyrDx[i]; dst = pyrDx[i]; normInf = cvtest::norm(dst, ref, cv::NORM_INF); normL2 = cvtest::norm(dst, ref, cv::NORM_L2) / dst.total(); EXPECT_LE(normInf, 76.1); EXPECT_LT(normL2, 0.4); ref = refPyrDy[i]; dst = pyrDy[i]; normInf = cvtest::norm(dst, ref, cv::NORM_INF); normL2 = cvtest::norm(dst, ref, cv::NORM_L2) / dst.total(); EXPECT_LE(normInf, 66.6); EXPECT_LT(normL2, 0.4); } if (cvtest::debugLevel > 0) { std::map typeToString = { {CV_8U, "8u"}, {CV_8S, "8s"}, {CV_16U, "16u"}, {CV_16S, "16s"}, {CV_32S, "32s"}, {CV_32F, "32f"}, {CV_64F, "64f"}, {CV_16F, "16f"}, }; for (size_t i = 0; i < nLevels; i++) { cv::imwrite(cv::format("pyr_l%zu.png", i), pyr[i]); cv::imwrite(cv::format("pyr_sobel_x_t%s_l%zu.png", typeToString.at(type).c_str(), i), pyrDx[i] + 128); cv::imwrite(cv::format("pyr_sobel_y_t%s_l%zu.png", typeToString.at(type).c_str(), i), pyrDy[i] + 128); cv::imwrite(cv::format("ref_pyr_sobel_x_t%s_l%zu.png", typeToString.at(type).c_str(), i), refPyrDx[i] + 128); cv::imwrite(cv::format("ref_pyr_sobel_y_t%s_l%zu.png", typeToString.at(type).c_str(), i), refPyrDy[i] + 128); } } } INSTANTIATE_TEST_CASE_P(FastCV_Extension, SobelPyramidTest, ::testing::Combine( ::testing::Values(CV_8S, CV_16S, CV_32F), // depth ::testing::Values(3, 6))); // nLevels }} // namespaces opencv_test, ::