/* * Software License Agreement (BSD License) * * Copyright (c) 2009, Willow Garage, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Willow Garage, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ /** * @file demo_sphereview_data.cpp * @brief Generating training data for CNN with triplet loss. * @author Yida Wang */ #include #include #include #include using namespace cv; using namespace std; using namespace cv::cnn_3dobj; int main(int argc, char *argv[]) { const String keys = "{help | | demo :$ ./sphereview_test -ite_depth=2 -plymodel=../data/3Dmodel/ape.ply -imagedir=../data/images_all/ -labeldir=../data/label_all.txt -num_class=6 -label_class=0, then press 'q' to run the demo for images generation when you see the gray background and a coordinate.}" "{ite_depth | 3 | Iteration of sphere generation.}" "{plymodel | ../data/3Dmodel/ape.ply | Path of the '.ply' file for image rendering. }" "{imagedir | ../data/images_all/ | Path of the generated images for one particular .ply model. }" "{labeldir | ../data/label_all.txt | Path of the generated images for one particular .ply model. }" "{cam_head_x | 0 | Head of the camera. }" "{cam_head_y | -1 | Head of the camera. }" "{cam_head_z | 0 | Head of the camera. }" "{num_class | 6 | Total number of classes of models}" "{label_class | 0 | Class label of current .ply model}" "{rgb_use | 0 | Use RGB image or grayscale}"; /* Get parameters from comand line. */ cv::CommandLineParser parser(argc, argv, keys); parser.about("Generating training data for CNN with triplet loss"); if (parser.has("help")) { parser.printMessage(); return 0; } int ite_depth = parser.get("ite_depth"); string plymodel = parser.get("plymodel"); string imagedir = parser.get("imagedir"); string labeldir = parser.get("labeldir"); int num_class = parser.get("num_class"); int label_class = parser.get("label_class"); float cam_head_x = parser.get("cam_head_x"); float cam_head_y = parser.get("cam_head_y"); float cam_head_z = parser.get("cam_head_z"); int rgb_use = parser.get("rgb_use"); cv::cnn_3dobj::icoSphere ViewSphere(10,ite_depth); std::vector campos = ViewSphere.CameraPos; std::fstream imglabel; char* p=(char*)labeldir.data(); imglabel.open(p, fstream::app|fstream::out); bool camera_pov = true; /* Create a window using viz. */ viz::Viz3d myWindow("Coordinate Frame"); /* Set window size as 64*64, we use this scale as default. */ myWindow.setWindowSize(Size(64,64)); /* Set background color. */ myWindow.setBackgroundColor(viz::Color::gray()); myWindow.spin(); /* Create a Mesh widget, loading .ply models. */ viz::Mesh objmesh = viz::Mesh::load(plymodel); /* Get the center of the generated mesh widget, cause some .ply files. */ Point3d cam_focal_point = ViewSphere.getCenter(objmesh.cloud); float radius = ViewSphere.getRadius(objmesh.cloud, cam_focal_point); objmesh.cloud = objmesh.cloud/radius*100; cam_focal_point = cam_focal_point/radius*100; Point3d cam_y_dir; cam_y_dir.x = cam_head_x; cam_y_dir.y = cam_head_y; cam_y_dir.z = cam_head_z; const char* headerPath = "../data/header_for_"; const char* binaryPath = "../data/binary_"; ViewSphere.createHeader((int)campos.size(), 64, 64, headerPath); /* Images will be saved as .png files. */ for(int pose = 0; pose < (int)campos.size(); pose++){ char* temp = new char; sprintf (temp,"%d",label_class); string filename = temp; filename += "_"; sprintf (temp,"%d",pose); filename += temp; filename += ".png"; imglabel << filename << ' ' << (int)(campos.at(pose).x*100) << ' ' << (int)(campos.at(pose).y*100) << ' ' << (int)(campos.at(pose).z*100) << endl; filename = imagedir + filename; /* Get the pose of the camera using makeCameraPoses. */ Affine3f cam_pose = viz::makeCameraPose(campos.at(pose)*380+cam_focal_point, cam_focal_point, cam_y_dir*380+cam_focal_point); /* Get the transformation matrix from camera coordinate system to global. */ Affine3f transform = viz::makeTransformToGlobal(Vec3f(1.0f,0.0f,0.0f), Vec3f(0.0f,1.0f,0.0f), Vec3f(0.0f,0.0f,1.0f), campos.at(pose)); viz::WMesh mesh_widget(objmesh); /* Pose of the widget in camera frame. */ Affine3f cloud_pose = Affine3f().translate(Vec3f(1.0f,1.0f,1.0f)); /* Pose of the widget in global frame. */ Affine3f cloud_pose_global = transform * cloud_pose; /* Visualize camera frame. */ if (!camera_pov) { viz::WCameraPosition cpw(1); // Coordinate axes viz::WCameraPosition cpw_frustum(Vec2f(0.5, 0.5)); // Camera frustum myWindow.showWidget("CPW", cpw, cam_pose); myWindow.showWidget("CPW_FRUSTUM", cpw_frustum, cam_pose); } /* Visualize widget. */ mesh_widget.setRenderingProperty(viz::LINE_WIDTH, 4.0); myWindow.showWidget("ape", mesh_widget, cloud_pose_global); /* Set the viewer pose to that of camera. */ if (camera_pov) myWindow.setViewerPose(cam_pose); /* Save screen shot as images. */ myWindow.saveScreenshot(filename); /* Write images into binary files for further using in CNN training. */ ViewSphere.writeBinaryfile(filename, binaryPath, headerPath,(int)campos.size()*num_class, label_class, (int)(campos.at(pose).x*100), (int)(campos.at(pose).y*100), (int)(campos.at(pose).z*100), rgb_use); } imglabel.close(); return 1; };