mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-20 21:40:49 +08:00
212 lines
7.9 KiB
C++
212 lines
7.9 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "trackerCSRTScaleEstimation.hpp"
|
|
#include "trackerCSRTUtils.hpp"
|
|
|
|
//Discriminative Scale Space Tracking
|
|
namespace cv
|
|
{
|
|
|
|
class ParallelGetScaleFeatures : public ParallelLoopBody
|
|
{
|
|
public:
|
|
ParallelGetScaleFeatures(
|
|
Mat img,
|
|
Point2f pos,
|
|
Size2f base_target_sz,
|
|
float current_scale,
|
|
std::vector<float> &scale_factors,
|
|
Mat scale_window,
|
|
Size scale_model_sz,
|
|
int col_len,
|
|
Mat &result)
|
|
{
|
|
this->img = img;
|
|
this->pos = pos;
|
|
this->base_target_sz = base_target_sz;
|
|
this->current_scale = current_scale;
|
|
this->scale_factors = scale_factors;
|
|
this->scale_window = scale_window;
|
|
this->scale_model_sz = scale_model_sz;
|
|
this->col_len = col_len;
|
|
this->result = result;
|
|
}
|
|
virtual void operator ()(const Range& range) const CV_OVERRIDE
|
|
{
|
|
for (int s = range.start; s < range.end; s++) {
|
|
Size patch_sz = Size(static_cast<int>(current_scale * scale_factors[s] * base_target_sz.width),
|
|
static_cast<int>(current_scale * scale_factors[s] * base_target_sz.height));
|
|
Mat img_patch = get_subwindow(img, pos, patch_sz.width, patch_sz.height);
|
|
img_patch.convertTo(img_patch, CV_32FC3);
|
|
resize(img_patch, img_patch, Size(scale_model_sz.width, scale_model_sz.height),0,0,INTER_LINEAR);
|
|
std::vector<Mat> hog;
|
|
hog = get_features_hog(img_patch, 4);
|
|
for (int i = 0; i < static_cast<int>(hog.size()); ++i) {
|
|
hog[i] = hog[i].t();
|
|
hog[i] = scale_window.at<float>(0,s) * hog[i].reshape(0, col_len);
|
|
hog[i].copyTo(result(Rect(Point(s, i*col_len), hog[i].size())));
|
|
}
|
|
}
|
|
}
|
|
|
|
ParallelGetScaleFeatures& operator=(const ParallelGetScaleFeatures &) {
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
Mat img;
|
|
Point2f pos;
|
|
Size2f base_target_sz;
|
|
float current_scale;
|
|
std::vector<float> scale_factors;
|
|
Mat scale_window;
|
|
Size scale_model_sz;
|
|
int col_len;
|
|
Mat result;
|
|
};
|
|
|
|
|
|
DSST::DSST(const Mat &image,
|
|
Rect2f bounding_box,
|
|
Size2f template_size,
|
|
int numberOfScales,
|
|
float scaleStep,
|
|
float maxModelArea,
|
|
float sigmaFactor,
|
|
float scaleLearnRate):
|
|
scales_count(numberOfScales), scale_step(scaleStep), max_model_area(maxModelArea),
|
|
sigma_factor(sigmaFactor), learn_rate(scaleLearnRate)
|
|
{
|
|
original_targ_sz = bounding_box.size();
|
|
Point2f object_center = Point2f(bounding_box.x + original_targ_sz.width / 2,
|
|
bounding_box.y + original_targ_sz.height / 2);
|
|
|
|
current_scale_factor = 1.0;
|
|
if(scales_count % 2 == 0)
|
|
scales_count++;
|
|
|
|
scale_sigma = static_cast<float>(sqrt(scales_count) * sigma_factor);
|
|
|
|
min_scale_factor = static_cast<float>(pow(scale_step,
|
|
cvCeil(log(max(5.0 / template_size.width, 5.0 / template_size.height)) / log(scale_step))));
|
|
max_scale_factor = static_cast<float>(pow(scale_step,
|
|
cvFloor(log(min((float)image.rows / (float)bounding_box.width,
|
|
(float)image.cols / (float)bounding_box.height)) / log(scale_step))));
|
|
ys = Mat(1, scales_count, CV_32FC1);
|
|
float ss, sf;
|
|
for(int i = 0; i < ys.cols; ++i) {
|
|
ss = (float)(i+1) - cvCeil((float)scales_count / 2.0f);
|
|
ys.at<float>(0,i) = static_cast<float>(exp(-0.5 * pow(ss,2) / pow(scale_sigma,2)));
|
|
sf = static_cast<float>(i + 1);
|
|
scale_factors.push_back(pow(scale_step, cvCeil((float)scales_count / 2.0f) - sf));
|
|
}
|
|
|
|
scale_window = get_hann_win(Size(scales_count, 1));
|
|
|
|
float scale_model_factor = 1.0;
|
|
if(template_size.width * template_size.height * pow(scale_model_factor, 2) > max_model_area)
|
|
{
|
|
scale_model_factor = sqrt(max_model_area /
|
|
(template_size.width * template_size.height));
|
|
}
|
|
scale_model_sz = Size(cvFloor(template_size.width * scale_model_factor),
|
|
cvFloor(template_size.height * scale_model_factor));
|
|
|
|
Mat scale_resp = get_scale_features(image, object_center, original_targ_sz,
|
|
current_scale_factor, scale_factors, scale_window, scale_model_sz);
|
|
|
|
Mat ysf_row = Mat(ys.size(), CV_32FC2);
|
|
dft(ys, ysf_row, DFT_ROWS | DFT_COMPLEX_OUTPUT, 0);
|
|
ysf = repeat(ysf_row, scale_resp.rows, 1);
|
|
Mat Fscale_resp;
|
|
dft(scale_resp, Fscale_resp, DFT_ROWS | DFT_COMPLEX_OUTPUT);
|
|
mulSpectrums(ysf, Fscale_resp, sf_num, 0 , true);
|
|
Mat sf_den_all;
|
|
mulSpectrums(Fscale_resp, Fscale_resp, sf_den_all, 0, true);
|
|
reduce(sf_den_all, sf_den, 0, CV_REDUCE_SUM, -1);
|
|
}
|
|
|
|
DSST::~DSST()
|
|
{
|
|
}
|
|
|
|
Mat DSST::get_scale_features(
|
|
Mat img,
|
|
Point2f pos,
|
|
Size2f base_target_sz,
|
|
float current_scale,
|
|
std::vector<float> &scale_factors,
|
|
Mat scale_window,
|
|
Size scale_model_sz)
|
|
{
|
|
Mat result;
|
|
int col_len = 0;
|
|
Size patch_sz = Size(cvFloor(current_scale * scale_factors[0] * base_target_sz.width),
|
|
cvFloor(current_scale * scale_factors[0] * base_target_sz.height));
|
|
Mat img_patch = get_subwindow(img, pos, patch_sz.width, patch_sz.height);
|
|
img_patch.convertTo(img_patch, CV_32FC3);
|
|
resize(img_patch, img_patch, Size(scale_model_sz.width, scale_model_sz.height),0,0,INTER_LINEAR);
|
|
std::vector<Mat> hog;
|
|
hog = get_features_hog(img_patch, 4);
|
|
result = Mat(Size((int)scale_factors.size(), hog[0].cols * hog[0].rows * (int)hog.size()), CV_32F);
|
|
col_len = hog[0].cols * hog[0].rows;
|
|
for (int i = 0; i < static_cast<int>(hog.size()); ++i) {
|
|
hog[i] = hog[i].t();
|
|
hog[i] = scale_window.at<float>(0,0) * hog[i].reshape(0, col_len);
|
|
hog[i].copyTo(result(Rect(Point(0, i*col_len), hog[i].size())));
|
|
}
|
|
|
|
ParallelGetScaleFeatures parallelGetScaleFeatures(img, pos, base_target_sz,
|
|
current_scale, scale_factors, scale_window, scale_model_sz, col_len, result);
|
|
parallel_for_(Range(1, static_cast<int>(scale_factors.size())), parallelGetScaleFeatures);
|
|
return result;
|
|
}
|
|
|
|
void DSST::update(const Mat &image, const Point2f object_center)
|
|
{
|
|
Mat scale_features = get_scale_features(image, object_center, original_targ_sz,
|
|
current_scale_factor, scale_factors, scale_window, scale_model_sz);
|
|
Mat Fscale_features;
|
|
dft(scale_features, Fscale_features, DFT_ROWS | DFT_COMPLEX_OUTPUT);
|
|
Mat new_sf_num;
|
|
Mat new_sf_den;
|
|
Mat new_sf_den_all;
|
|
mulSpectrums(ysf, Fscale_features, new_sf_num, DFT_ROWS, true);
|
|
Mat sf_den_all;
|
|
mulSpectrums(Fscale_features, Fscale_features, new_sf_den_all, DFT_ROWS, true);
|
|
reduce(new_sf_den_all, new_sf_den, 0, CV_REDUCE_SUM, -1);
|
|
|
|
sf_num = (1 - learn_rate) * sf_num + learn_rate * new_sf_num;
|
|
sf_den = (1 - learn_rate) * sf_den + learn_rate * new_sf_den;
|
|
}
|
|
|
|
float DSST::getScale(const Mat &image, const Point2f object_center)
|
|
{
|
|
Mat scale_features = get_scale_features(image, object_center, original_targ_sz,
|
|
current_scale_factor, scale_factors, scale_window, scale_model_sz);
|
|
|
|
Mat Fscale_features;
|
|
dft(scale_features, Fscale_features, DFT_ROWS | DFT_COMPLEX_OUTPUT);
|
|
|
|
mulSpectrums(Fscale_features, sf_num, Fscale_features, 0, false);
|
|
Mat scale_resp;
|
|
reduce(Fscale_features, scale_resp, 0, CV_REDUCE_SUM, -1);
|
|
scale_resp = divide_complex_matrices(scale_resp, sf_den + 0.01f);
|
|
idft(scale_resp, scale_resp, DFT_REAL_OUTPUT|DFT_SCALE);
|
|
Point max_loc;
|
|
minMaxLoc(scale_resp, NULL, NULL, NULL, &max_loc);
|
|
|
|
current_scale_factor *= scale_factors[max_loc.x];
|
|
if(current_scale_factor < min_scale_factor)
|
|
current_scale_factor = min_scale_factor;
|
|
else if(current_scale_factor > max_scale_factor)
|
|
current_scale_factor = max_scale_factor;
|
|
|
|
return current_scale_factor;
|
|
}
|
|
} /* namespace cv */
|