mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-18 17:24:28 +08:00

* Move objdetect parts to contrib * Move objdetect parts to contrib * Fix errors from CI build. * Minor fixes.
135 lines
5.3 KiB
C++
135 lines
5.3 KiB
C++
/*----------------------------------------------
|
|
* the user should provide the list of training images_train,
|
|
* accompanied by their corresponding landmarks location in separated files.
|
|
* example of contents for images.txt:
|
|
* ../trainset/image_0001.png
|
|
* ../trainset/image_0002.png
|
|
* example of contents for annotation.txt:
|
|
* ../trainset/image_0001.pts
|
|
* ../trainset/image_0002.pts
|
|
* where the image_xxxx.pts contains the position of each face landmark.
|
|
* example of the contents:
|
|
* version: 1
|
|
* n_points: 68
|
|
* {
|
|
* 115.167660 220.807529
|
|
* 116.164839 245.721357
|
|
* 120.208690 270.389841
|
|
* ...
|
|
* }
|
|
* example of the dataset is available at https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
|
|
*--------------------------------------------------*/
|
|
#include "opencv2/face.hpp"
|
|
#include "opencv2/highgui.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
#include "opencv2/imgcodecs.hpp"
|
|
#include "opencv2/xobjdetect.hpp"
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <string>
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
using namespace cv::face;
|
|
|
|
static bool myDetector(InputArray image, OutputArray faces, CascadeClassifier *face_cascade)
|
|
{
|
|
Mat gray;
|
|
|
|
if (image.channels() > 1)
|
|
cvtColor(image, gray, COLOR_BGR2GRAY);
|
|
else
|
|
gray = image.getMat().clone();
|
|
|
|
equalizeHist(gray, gray);
|
|
|
|
std::vector<Rect> faces_;
|
|
face_cascade->detectMultiScale(gray, faces_, 1.4, 2, CASCADE_SCALE_IMAGE, Size(30, 30));
|
|
Mat(faces_).copyTo(faces);
|
|
return true;
|
|
}
|
|
|
|
int main(int argc,char** argv){
|
|
//Give the path to the directory containing all the files containing data
|
|
CommandLineParser parser(argc, argv,
|
|
"{ help h usage ? | | give the following arguments in following format }"
|
|
"{ images i | | (required) path to images txt file [example - /data/images.txt] }"
|
|
"{ annotations a |. | (required) path to annotations txt file [example - /data/annotations.txt] }"
|
|
"{ config c | | (required) path to configuration xml file containing parameters for training.[example - /data/config.xml] }"
|
|
"{ model m | | (required) path to file containing trained model for face landmark detection[example - /data/model.dat] }"
|
|
"{ width w | 460 | The width which you want all images to get to scale the annotations. large images are slow to process [default = 460] }"
|
|
"{ height h | 460 | The height which you want all images to get to scale the annotations. large images are slow to process [default = 460] }"
|
|
"{ face_cascade f | | Path to the face cascade xml file which you want to use as a detector}"
|
|
);
|
|
// Read in the input arguments
|
|
if (parser.has("help")){
|
|
parser.printMessage();
|
|
cerr << "TIP: Use absolute paths to avoid any problems with the software!" << endl;
|
|
return 0;
|
|
}
|
|
string annotations(parser.get<string>("annotations"));
|
|
string imagesList(parser.get<string>("images"));
|
|
//default initialisation
|
|
Size scale(460,460);
|
|
scale = Size(parser.get<int>("width"),parser.get<int>("height"));
|
|
if (annotations.empty()){
|
|
parser.printMessage();
|
|
cerr << "Name for annotations file not found. Aborting...." << endl;
|
|
return -1;
|
|
}
|
|
if (imagesList.empty()){
|
|
parser.printMessage();
|
|
cerr << "Name for file containing image list not found. Aborting....." << endl;
|
|
return -1;
|
|
}
|
|
string configfile_name(parser.get<string>("config"));
|
|
if (configfile_name.empty()){
|
|
parser.printMessage();
|
|
cerr << "No configuration file name found which contains the parameters for training" << endl;
|
|
return -1;
|
|
}
|
|
string modelfile_name(parser.get<string>("model"));
|
|
if (modelfile_name.empty()){
|
|
parser.printMessage();
|
|
cerr << "No name for the model_file found in which the trained model has to be saved" << endl;
|
|
return -1;
|
|
}
|
|
string cascade_name(parser.get<string>("face_cascade"));
|
|
if (cascade_name.empty()){
|
|
parser.printMessage();
|
|
cerr << "The name of the cascade classifier to be loaded to detect faces is not found" << endl;
|
|
return -1;
|
|
}
|
|
//create a pointer to call the base class
|
|
//pass the face cascade xml file which you want to pass as a detector
|
|
CascadeClassifier face_cascade;
|
|
face_cascade.load(cascade_name);
|
|
FacemarkKazemi::Params params;
|
|
params.configfile = configfile_name;
|
|
Ptr<FacemarkKazemi> facemark = FacemarkKazemi::create(params);
|
|
facemark->setFaceDetector((FN_FaceDetector)myDetector, &face_cascade);
|
|
|
|
std::vector<String> images;
|
|
std::vector<std::vector<Point2f> > facePoints;
|
|
loadTrainingData(imagesList, annotations, images, facePoints, 0.0);
|
|
//gets landmarks and corresponding image names in both the vectors
|
|
vector<Mat> Trainimages;
|
|
std::vector<std::vector<Point2f> > Trainlandmarks;
|
|
//vector to store images
|
|
Mat src;
|
|
for(unsigned long i=0;i<images.size();i++){
|
|
src = imread(images[i]);
|
|
if(src.empty()){
|
|
cout<<images[i]<<endl;
|
|
cerr<<string("Image not found\n.Aborting...")<<endl;
|
|
continue;
|
|
}
|
|
Trainimages.push_back(src);
|
|
Trainlandmarks.push_back(facePoints[i]);
|
|
}
|
|
cout<<"Got data"<<endl;
|
|
facemark->training(Trainimages,Trainlandmarks,configfile_name,scale,modelfile_name);
|
|
cout<<"Training complete"<<endl;
|
|
return 0;
|
|
}
|