1
0
mirror of https://github.com/opencv/opencv_contrib.git synced 2025-10-17 07:04:18 +08:00
Files
opencv_contrib/modules/fastcv/perf/perf_warp.cpp
2025-06-17 15:38:34 +03:00

237 lines
7.3 KiB
C++

/*
* Copyright (c) 2024-2025 Qualcomm Innovation Center, Inc. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*/
#include "perf_precomp.hpp"
namespace opencv_test {
static void getInvertMatrix(Mat& src, Size dstSize, Mat& M)
{
RNG& rng = cv::theRNG();
Point2f s[4], d[4];
s[0] = Point2f(0,0);
d[0] = Point2f(0,0);
s[1] = Point2f(src.cols-1.f,0);
d[1] = Point2f(dstSize.width-1.f,0);
s[2] = Point2f(src.cols-1.f,src.rows-1.f);
d[2] = Point2f(dstSize.width-1.f,dstSize.height-1.f);
s[3] = Point2f(0,src.rows-1.f);
d[3] = Point2f(0,dstSize.height-1.f);
float buffer[16];
Mat tmp( 1, 16, CV_32FC1, buffer );
rng.fill( tmp, 1, Scalar::all(0.), Scalar::all(0.1) );
for(int i = 0; i < 4; i++ )
{
s[i].x += buffer[i*4]*src.cols/2;
s[i].y += buffer[i*4+1]*src.rows/2;
d[i].x += buffer[i*4+2]*dstSize.width/2;
d[i].y += buffer[i*4+3]*dstSize.height/2;
}
cv::getPerspectiveTransform( s, d ).convertTo( M, M.depth() );
// Invert the perspective matrix
invert(M,M);
}
static cv::Mat getInverseAffine(const cv::Mat& affine)
{
// Extract the 2x2 part
cv::Mat rotationScaling = affine(cv::Rect(0, 0, 2, 2));
// Invert the 2x2 part
cv::Mat inverseRotationScaling;
cv::invert(rotationScaling, inverseRotationScaling);
// Extract the translation part
cv::Mat translation = affine(cv::Rect(2, 0, 1, 2));
// Compute the new translation
cv::Mat inverseTranslation = -inverseRotationScaling * translation;
// Construct the inverse affine matrix
cv::Mat inverseAffine = cv::Mat::zeros(2, 3, CV_32F);
inverseRotationScaling.copyTo(inverseAffine(cv::Rect(0, 0, 2, 2)));
inverseTranslation.copyTo(inverseAffine(cv::Rect(2, 0, 1, 2)));
return inverseAffine;
}
typedef perf::TestBaseWithParam<Size> WarpPerspective2PlanePerfTest;
PERF_TEST_P(WarpPerspective2PlanePerfTest, run,
::testing::Values(perf::szVGA, perf::sz720p, perf::sz1080p))
{
cv::Size dstSize = GetParam();
cv::Mat img = imread(cvtest::findDataFile("cv/shared/baboon.png"));
Mat src(img.rows, img.cols, CV_8UC1);
cvtColor(img,src,cv::COLOR_BGR2GRAY);
cv::Mat dst1, dst2, matrix;
matrix.create(3,3,CV_32FC1);
getInvertMatrix(src, dstSize, matrix);
while (next())
{
startTimer();
cv::fastcv::warpPerspective2Plane(src, src, dst1, dst2, matrix, dstSize);
stopTimer();
}
SANITY_CHECK_NOTHING();
}
typedef perf::TestBaseWithParam<tuple<Size, int, int>> WarpPerspectivePerfTest;
PERF_TEST_P(WarpPerspectivePerfTest, run,
::testing::Combine( ::testing::Values(perf::szVGA, perf::sz720p, perf::sz1080p),
::testing::Values(INTER_NEAREST, INTER_LINEAR, INTER_AREA),
::testing::Values(BORDER_CONSTANT, BORDER_REPLICATE, BORDER_TRANSPARENT)))
{
cv::Size dstSize = get<0>(GetParam());
int interplation = get<1>(GetParam());
int borderType = get<2>(GetParam());
cv::Scalar borderValue = Scalar::all(100);
cv::Mat src = imread(cvtest::findDataFile("cv/shared/baboon.png"), cv::IMREAD_GRAYSCALE);
EXPECT_FALSE(src.empty());
cv::Mat dst, matrix, ref;
matrix.create(3, 3, CV_32FC1);
getInvertMatrix(src, dstSize, matrix);
while (next())
{
startTimer();
cv::fastcv::warpPerspective(src, dst, matrix, dstSize, interplation, borderType, borderValue);
stopTimer();
}
SANITY_CHECK_NOTHING();
}
typedef TestBaseWithParam< tuple<MatType, Size> > WarpAffine3ChannelPerf;
PERF_TEST_P(WarpAffine3ChannelPerf, run, Combine(
Values(CV_8UC3),
Values( szVGA, sz720p, sz1080p)
))
{
Size sz, szSrc(512, 512);
int dataType;
dataType = get<0>(GetParam());
sz = get<1>(GetParam());
cv::Mat src(szSrc, dataType), dst(sz, dataType);
cvtest::fillGradient<uint8_t>(src);
//Affine matrix
float angle = 30.0; // Rotation angle in degrees
float scale = 2.2; // Scale factor
cv::Mat affine = cv::getRotationMatrix2D(cv::Point2f(100, 100), angle, scale);
// Compute the inverse affine matrix
cv::Mat inverseAffine = getInverseAffine(affine);
// Create the dstBorder array
Mat dstBorder;
declare.in(src).out(dst);
while (next())
{
startTimer();
cv::fastcv::warpAffine(src, dst, inverseAffine, sz);
stopTimer();
}
SANITY_CHECK_NOTHING();
}
typedef perf::TestBaseWithParam<std::tuple<cv::Size, cv::Point2f, cv::Mat>> WarpAffineROIPerfTest;
PERF_TEST_P(WarpAffineROIPerfTest, run, ::testing::Combine(
::testing::Values(cv::Size(50, 50), cv::Size(100, 100)), // patch size
::testing::Values(cv::Point2f(50.0f, 50.0f), cv::Point2f(100.0f, 100.0f)), // position
::testing::Values((cv::Mat_<float>(2, 2) << 1, 0, 0, 1), // identity matrix
(cv::Mat_<float>(2, 2) << cos(CV_PI), -sin(CV_PI), sin(CV_PI), cos(CV_PI))) // rotation matrix
))
{
cv::Size patchSize = std::get<0>(GetParam());
cv::Point2f position = std::get<1>(GetParam());
cv::Mat affine = std::get<2>(GetParam());
cv::Mat src = cv::imread(cvtest::findDataFile("cv/shared/baboon.png"), cv::IMREAD_GRAYSCALE);
// Create ROI with top-left at the specified position
cv::Rect roiRect(static_cast<int>(position.x), static_cast<int>(position.y), patchSize.width, patchSize.height);
// Ensure ROI is within image bounds
roiRect = roiRect & cv::Rect(0, 0, src.cols, src.rows);
cv::Mat roi = src(roiRect);
cv::Mat patch;
while (next())
{
startTimer();
cv::fastcv::warpAffine(roi, patch, affine, patchSize);
stopTimer();
}
SANITY_CHECK_NOTHING();
}
typedef TestBaseWithParam<tuple<int, int> > WarpAffinePerfTest;
PERF_TEST_P(WarpAffinePerfTest, run, ::testing::Combine(
::testing::Values(cv::InterpolationFlags::INTER_NEAREST, cv::InterpolationFlags::INTER_LINEAR, cv::InterpolationFlags::INTER_AREA),
::testing::Values(0, 255) // Black and white borders
))
{
// Load the source image
cv::Mat src = cv::imread(cvtest::findDataFile("cv/shared/baboon.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(src.empty());
// Generate random values for the affine matrix
std::srand(std::time(0));
float angle = static_cast<float>(std::rand() % 360); // Random angle between 0 and 360 degrees
float scale = static_cast<float>(std::rand() % 200) / 100.0f + 0.5f; // Random scale between 0.5 and 2.5
float tx = static_cast<float>(std::rand() % 100) - 50; // Random translation between -50 and 50
float ty = static_cast<float>(std::rand() % 100) - 50; // Random translation between -50 and 50
float radians = angle * CV_PI / 180.0;
cv::Mat affine = (cv::Mat_<float>(2, 3) << scale * cos(radians), -scale * sin(radians), tx,
scale * sin(radians), scale * cos(radians), ty);
// Compute the inverse affine matrix
cv::Mat inverseAffine = getInverseAffine(affine);
// Define the destination size
cv::Size dsize(src.cols, src.rows);
// Define the output matrix
cv::Mat dst;
// Get the parameters
int interpolation = std::get<0>(GetParam());
int borderValue = std::get<1>(GetParam());
while (next())
{
startTimer();
cv::fastcv::warpAffine(src, dst, inverseAffine, dsize, interpolation, borderValue);
stopTimer();
}
SANITY_CHECK_NOTHING();
}
} //namespace