1
0
mirror of https://github.com/opencv/opencv_contrib.git synced 2025-10-19 11:21:39 +08:00
Files
opencv_contrib/modules/fastcv/test/test_cluster_euclidean.cpp
sssanjee-quic 2c7591c57f Merge pull request #3824 from CodeLinaro:FastcvHAL_1stPost
Depends on https://github.com/opencv/opencv/pull/26316

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-12-02 10:53:50 +03:00

124 lines
4.2 KiB
C++

/*
* Copyright (c) 2024 Qualcomm Innovation Center, Inc. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*/
#include "test_precomp.hpp"
namespace opencv_test { namespace {
// nPts, nDims, nClusters
typedef std::tuple<int, int, int> ClusterEuclideanTestParams;
class ClusterEuclideanTest : public ::testing::TestWithParam<ClusterEuclideanTestParams> {};
TEST_P(ClusterEuclideanTest, accuracy)
{
auto p = GetParam();
int nPts = std::get<0>(p);
int nDims = std::get<1>(p);
int nClusters = std::get<2>(p);
Mat points(nPts, nDims, CV_8U);
Mat clusterCenters(nClusters, nDims, CV_32F);
Mat trueMeans(nClusters, nDims, CV_32F);
Mat stddevs(nClusters, nDims, CV_32F);
std::vector<int> trueClusterSizes(nClusters, 0);
std::vector<int> trueClusterBindings(nPts, 0);
std::vector<float> trueSumDists(nClusters, 0);
cv::RNG& rng = cv::theRNG();
for (int i = 0; i < nClusters; i++)
{
Mat mean(1, nDims, CV_64F), stdev(1, nDims, CV_64F);
rng.fill(mean, cv::RNG::UNIFORM, 0, 256);
rng.fill(stdev, cv::RNG::UNIFORM, 5.f, 16);
int lo = i * nPts / nClusters;
int hi = (i + 1) * nPts / nClusters;
for (int d = 0; d < nDims; d++)
{
rng.fill(points.col(d).rowRange(lo, hi), cv::RNG::NORMAL,
mean.at<double>(d), stdev.at<double>(d));
}
float sd = 0;
for (int j = lo; j < hi; j++)
{
Mat pts64f;
points.row(j).convertTo(pts64f, CV_64F);
sd += cv::norm(mean, pts64f, NORM_L2);
trueClusterBindings.at(j) = i;
trueClusterSizes.at(i)++;
}
trueSumDists.at(i) = sd;
// let's shift initial cluster center a bit
Mat(mean + stdev * 0.5).copyTo(clusterCenters.row(i));
mean.copyTo(trueMeans.row(i));
stdev.copyTo(stddevs.row(i));
}
Mat newClusterCenters;
std::vector<int> clusterSizes, clusterBindings;
std::vector<float> clusterSumDists;
cv::fastcv::clusterEuclidean(points, clusterCenters, newClusterCenters, clusterSizes, clusterBindings, clusterSumDists);
if (cvtest::debugLevel > 0 && nDims == 2)
{
Mat draw(256, 256, CV_8UC3, Scalar(0));
for (int i = 0; i < nPts; i++)
{
int x = std::rint(points.at<uchar>(i, 0));
int y = std::rint(points.at<uchar>(i, 1));
draw.at<Vec3b>(y, x) = Vec3b::all(128);
}
for (int i = 0; i < nClusters; i++)
{
float cx = trueMeans.at<double>(i, 0);
float cy = trueMeans.at<double>(i, 1);
draw.at<Vec3b>(cy, cx) = Vec3b(0, 255, 0);
float sx = stddevs.at<double>(i, 0);
float sy = stddevs.at<double>(i, 1);
cv::ellipse(draw, Point(cx, cy), Size(sx, sy), 0, 0, 360, Scalar(255, 0, 0));
float ox = clusterCenters.at<float>(i, 0);
float oy = clusterCenters.at<float>(i, 1);
draw.at<Vec3b>(oy, ox) = Vec3b(0, 0, 255);
float nx = newClusterCenters.at<float>(i, 0);
float ny = newClusterCenters.at<float>(i, 1);
draw.at<Vec3b>(ny, nx) = Vec3b(255, 255, 0);
}
cv::imwrite(cv::format("draw_%d_%d_%d.png", nPts, nDims, nClusters), draw);
}
{
std::vector<double> diffs;
for (int i = 0; i < nClusters; i++)
{
double cs = std::abs((trueClusterSizes[i] - clusterSizes[i]) / double(trueClusterSizes[i]));
diffs.push_back(cs);
}
double normL2 = cv::norm(diffs, NORM_L2) / nClusters;
EXPECT_LT(normL2, 0.392);
}
{
Mat bindings8u, trueBindings8u;
Mat(clusterBindings).convertTo(bindings8u, CV_8U);
Mat(trueClusterBindings).convertTo(trueBindings8u, CV_8U);
double normH = cv::norm(bindings8u, trueBindings8u, NORM_HAMMING) / nPts;
EXPECT_LT(normH, 0.658);
}
}
INSTANTIATE_TEST_CASE_P(FastCV_Extension, ClusterEuclideanTest,
::testing::Combine(::testing::Values(100, 1000, 10000), // nPts
::testing::Values(2, 10, 32), // nDims
::testing::Values(5, 10, 16))); // nClusters
}} // namespaces opencv_test, ::