mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-18 08:44:11 +08:00
581 lines
18 KiB
C++
581 lines
18 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2014, Biagio Montesano, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
class CV_BinaryDescriptorMatcherTest : public cvtest::BaseTest
|
|
{
|
|
public:
|
|
CV_BinaryDescriptorMatcherTest( float _badPart ) :
|
|
badPart( _badPart )
|
|
{
|
|
dmatcher = BinaryDescriptorMatcher::createBinaryDescriptorMatcher();
|
|
}
|
|
|
|
protected:
|
|
static const int dim = 32;
|
|
static const int queryDescCount = 300; // must be even number because we split train data in some cases in two
|
|
static const int countFactor = 4; // do not change it
|
|
const float badPart;
|
|
|
|
virtual void run( int );
|
|
void generateData( Mat& query, Mat& train );
|
|
uchar invertSingleBits( uchar dividend_char, int numBits );
|
|
void emptyDataTest();
|
|
void matchTest( const Mat& query, const Mat& train );
|
|
void knnMatchTest( const Mat& query, const Mat& train );
|
|
void radiusMatchTest( const Mat& query, const Mat& train );
|
|
|
|
std::string name;
|
|
Ptr<BinaryDescriptorMatcher> dmatcher;
|
|
|
|
private:
|
|
CV_BinaryDescriptorMatcherTest& operator=( const CV_BinaryDescriptorMatcherTest& )
|
|
{
|
|
return *this;
|
|
}
|
|
|
|
};
|
|
|
|
/* invert numBits bits in input char */
|
|
uchar CV_BinaryDescriptorMatcherTest::invertSingleBits( uchar dividend_char, int numBits )
|
|
{
|
|
std::vector<int> bin_vector;
|
|
long dividend;
|
|
long bin_num;
|
|
|
|
/* convert input char to a long */
|
|
dividend = (long) dividend_char;
|
|
|
|
/*if a 0 has been obtained, just generate a 8-bit long vector of zeros */
|
|
if( dividend == 0 )
|
|
bin_vector = std::vector<int>( 8, 0 );
|
|
|
|
/* else, apply classic decimal to binary conversion */
|
|
else
|
|
{
|
|
while ( dividend >= 1 )
|
|
{
|
|
bin_num = dividend % 2;
|
|
dividend /= 2;
|
|
bin_vector.push_back( bin_num );
|
|
}
|
|
}
|
|
|
|
/* ensure that binary vector always has length 8 */
|
|
if( bin_vector.size() < 8 )
|
|
{
|
|
std::vector<int> zeros( 8 - bin_vector.size(), 0 );
|
|
bin_vector.insert( bin_vector.end(), zeros.begin(), zeros.end() );
|
|
}
|
|
|
|
/* invert numBits bits */
|
|
for ( int index = 0; index < numBits; index++ )
|
|
{
|
|
if( bin_vector[index] == 0 )
|
|
bin_vector[index] = 1;
|
|
|
|
else
|
|
bin_vector[index] = 0;
|
|
}
|
|
|
|
/* reconvert to decimal */
|
|
uchar result = 0;
|
|
for ( int i = (int) bin_vector.size() - 1; i >= 0; i-- )
|
|
result += (uchar) ( bin_vector[i] * ( 1 << i ) );
|
|
|
|
return result;
|
|
}
|
|
|
|
void CV_BinaryDescriptorMatcherTest::emptyDataTest()
|
|
{
|
|
Mat queryDescriptors, trainDescriptors, mask;
|
|
std::vector<Mat> trainDescriptorCollection, masks;
|
|
std::vector<DMatch> matches;
|
|
std::vector<std::vector<DMatch> > vmatches;
|
|
|
|
try
|
|
{
|
|
dmatcher->match( queryDescriptors, trainDescriptors, matches, mask );
|
|
}
|
|
|
|
catch ( ... )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (1).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
try
|
|
{
|
|
dmatcher->knnMatch( queryDescriptors, trainDescriptors, vmatches, 2, mask );
|
|
}
|
|
|
|
catch ( ... )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (1).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
try
|
|
{
|
|
dmatcher->radiusMatch( queryDescriptors, trainDescriptors, vmatches, 10.f, mask );
|
|
}
|
|
|
|
catch ( ... )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (1).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
try
|
|
{
|
|
dmatcher->add( trainDescriptorCollection );
|
|
}
|
|
|
|
catch ( ... )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "add() on empty descriptors must not generate exception.\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
try
|
|
{
|
|
dmatcher->match( queryDescriptors, matches, masks );
|
|
}
|
|
|
|
catch ( ... )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (2).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
try
|
|
{
|
|
dmatcher->knnMatch( queryDescriptors, vmatches, 2, masks );
|
|
}
|
|
|
|
catch ( ... )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (2).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
try
|
|
{
|
|
dmatcher->radiusMatch( queryDescriptors, vmatches, 10.f, masks );
|
|
}
|
|
|
|
catch ( ... )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (2).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
}
|
|
|
|
void CV_BinaryDescriptorMatcherTest::generateData( Mat& query, Mat& train )
|
|
{
|
|
RNG& rng = theRNG();
|
|
|
|
/* Generate query descriptors randomly.
|
|
Descriptor vector elements are binary values. */
|
|
Mat buf( queryDescCount, dim, CV_8UC1 );
|
|
rng.fill( buf, RNG::UNIFORM, Scalar( 0 ), Scalar( 255 ) );
|
|
buf.convertTo( query, CV_8UC1 );
|
|
|
|
for ( int i = 0; i < query.rows; i++ )
|
|
{
|
|
for ( int j = 0; j < countFactor; j++ )
|
|
{
|
|
train.push_back( query.row( i ) );
|
|
int randCol = rand() % 32;
|
|
uchar u = query.at<uchar>( i, randCol );
|
|
uchar modified_u = invertSingleBits( u, j + 1 );
|
|
train.at<uchar>( i * countFactor + j, randCol ) = modified_u;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CV_BinaryDescriptorMatcherTest::matchTest( const Mat& query, const Mat& train )
|
|
{
|
|
dmatcher->clear();
|
|
|
|
// test const version of match()
|
|
{
|
|
std::vector<DMatch> matches;
|
|
dmatcher->match( query, train, matches );
|
|
|
|
if( (int) matches.size() != queryDescCount )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Incorrect matches count while test match() function (1).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
else
|
|
{
|
|
int badCount = 0;
|
|
for ( size_t i = 0; i < matches.size(); i++ )
|
|
{
|
|
DMatch& match = matches[i];
|
|
if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor ) || ( match.imgIdx != 0 ) )
|
|
badCount++;
|
|
}
|
|
if( (float) badCount > (float) queryDescCount * badPart )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (1).\n",
|
|
(float) badCount / (float) queryDescCount );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
}
|
|
}
|
|
|
|
// test const version of match() for the same query and test descriptors
|
|
{
|
|
std::vector<DMatch> matches;
|
|
dmatcher->match( query, query, matches );
|
|
|
|
if( (int) matches.size() != query.rows )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Incorrect matches count while test match() function for the same query and test descriptors (1).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
else
|
|
{
|
|
for ( size_t i = 0; i < matches.size(); i++ )
|
|
{
|
|
DMatch& match = matches[i];
|
|
if( match.queryIdx != (int) i || match.trainIdx != (int) i || std::abs( match.distance ) > FLT_EPSILON )
|
|
{
|
|
ts->printf(
|
|
cvtest::TS::LOG,
|
|
"Bad match (i=%d, queryIdx=%d, trainIdx=%d, distance=%f) while test match() function for the same query and test descriptors (1).\n", i,
|
|
match.queryIdx, match.trainIdx, match.distance );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// test version of match() with add()
|
|
{
|
|
dmatcher->clear();
|
|
std::vector<DMatch> matches;
|
|
|
|
// make add() twice to test such case
|
|
dmatcher->add( std::vector<Mat>( 1, train.rowRange( 0, train.rows / 2 ) ) );
|
|
dmatcher->add( std::vector<Mat>( 1, train.rowRange( train.rows / 2, train.rows ) ) );
|
|
|
|
// prepare masks (make first nearest match illegal)
|
|
std::vector<Mat> masks( 2 );
|
|
for ( int mi = 0; mi < 2; mi++ )
|
|
masks[mi] = Mat::ones( query.rows, 1/*train.rows / 2*/, CV_8UC1 );
|
|
|
|
dmatcher->match( query, matches, masks );
|
|
if( (int) matches.size() != queryDescCount )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Incorrect matches count while test match() function (2).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
else
|
|
{
|
|
int badCount = 0;
|
|
for ( size_t i = 0; i < matches.size(); i++ )
|
|
{
|
|
DMatch& match = matches[i];
|
|
|
|
if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor /*+ shift*/) || ( match.imgIdx > 1 ) )
|
|
badCount++;
|
|
}
|
|
|
|
if( (float) badCount > (float) queryDescCount * badPart )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (2).\n",
|
|
(float) badCount / (float) queryDescCount );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CV_BinaryDescriptorMatcherTest::knnMatchTest( const Mat& query, const Mat& train )
|
|
{
|
|
dmatcher->clear();
|
|
|
|
// test const version of knnMatch()
|
|
{
|
|
const int knn = 3;
|
|
|
|
std::vector<std::vector<DMatch> > matches;
|
|
dmatcher->knnMatch( query, train, matches, knn );
|
|
|
|
if( (int) matches.size() != queryDescCount )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (1).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
else
|
|
{
|
|
int badCount = 0;
|
|
for ( size_t i = 0; i < matches.size(); i++ )
|
|
{
|
|
if( (int) matches[i].size() != knn )
|
|
badCount++;
|
|
|
|
else
|
|
{
|
|
int localBadCount = 0;
|
|
for ( int k = 0; k < knn; k++ )
|
|
{
|
|
DMatch& match = matches[i][k];
|
|
if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 0 ) )
|
|
localBadCount++;
|
|
}
|
|
badCount += localBadCount > 0 ? 1 : 0;
|
|
}
|
|
|
|
}
|
|
|
|
if( (float) badCount > (float) queryDescCount * badPart )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n",
|
|
(float) badCount / (float) queryDescCount );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
}
|
|
}
|
|
|
|
// // test version of knnMatch() with add()
|
|
{
|
|
const int knn = 2;
|
|
std::vector<std::vector<DMatch> > matches;
|
|
|
|
// make add() twice to test such case
|
|
dmatcher->add( std::vector<Mat>( 1, train.rowRange( 0, train.rows / 2 ) ) );
|
|
dmatcher->add( std::vector<Mat>( 1, train.rowRange( train.rows / 2, train.rows ) ) );
|
|
|
|
// prepare masks (make first nearest match illegal)
|
|
std::vector<Mat> masks( 2 );
|
|
for ( int mi = 0; mi < 2; mi++ )
|
|
{
|
|
masks[mi] = Mat::ones( query.rows, 1, CV_8UC1 );
|
|
}
|
|
|
|
dmatcher->knnMatch( query, matches, knn, masks );
|
|
|
|
if( (int) matches.size() != queryDescCount )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (2).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
else
|
|
{
|
|
int badCount = 0;
|
|
for ( size_t i = 0; i < matches.size(); i++ )
|
|
{
|
|
if( (int) matches[i].size() != knn )
|
|
badCount++;
|
|
|
|
else
|
|
{
|
|
int localBadCount = 0;
|
|
for ( int k = 0; k < knn; k++ )
|
|
{
|
|
DMatch& match = matches[i][k];
|
|
{
|
|
if( i < queryDescCount / 2 )
|
|
{
|
|
if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 0 ) )
|
|
localBadCount++;
|
|
}
|
|
|
|
else
|
|
{
|
|
if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 1 ) )
|
|
localBadCount++;
|
|
}
|
|
}
|
|
}
|
|
|
|
badCount += localBadCount > 0 ? 1 : 0;
|
|
}
|
|
}
|
|
|
|
if( (float) badCount > (float) queryDescCount * badPart )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n",
|
|
(float) badCount / (float) queryDescCount );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CV_BinaryDescriptorMatcherTest::radiusMatchTest( const Mat& query, const Mat& train )
|
|
{
|
|
dmatcher->clear();
|
|
// test const version of match()
|
|
{
|
|
const float radius = 1;
|
|
std::vector<std::vector<DMatch> > matches;
|
|
dmatcher->radiusMatch( query, train, matches, radius );
|
|
|
|
if( (int) matches.size() != queryDescCount )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
else
|
|
{
|
|
int badCount = 0;
|
|
for ( size_t i = 0; i < matches.size(); i++ )
|
|
{
|
|
|
|
if( (int) matches[i].size() != 1 )
|
|
{
|
|
badCount++;
|
|
}
|
|
|
|
else
|
|
{
|
|
DMatch& match = matches[i][0];
|
|
if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor ) || ( match.imgIdx != 0 ) )
|
|
badCount++;
|
|
}
|
|
}
|
|
|
|
if( (float) badCount > (float) queryDescCount * badPart )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n",
|
|
(float) badCount / (float) queryDescCount );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
const float radius = 3;
|
|
std::vector<std::vector<DMatch> > matches;
|
|
// make add() twice to test such case
|
|
dmatcher->add( std::vector<Mat>( 1, train.rowRange( 0, train.rows / 2 ) ) );
|
|
dmatcher->add( std::vector<Mat>( 1, train.rowRange( train.rows / 2, train.rows ) ) );
|
|
|
|
// prepare masks
|
|
std::vector<Mat> masks( 2 );
|
|
for ( int mi = 0; mi < 2; mi++ )
|
|
masks[mi] = Mat::ones( query.rows, 1, CV_8UC1 );
|
|
|
|
dmatcher->radiusMatch( query, matches, radius, masks );
|
|
|
|
//int curRes = cvtest::TS::OK;
|
|
if( (int) matches.size() != queryDescCount )
|
|
{
|
|
ts->printf( cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n" );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
}
|
|
|
|
int badCount = 0;
|
|
for ( size_t i = 0; i < matches.size(); i++ )
|
|
{
|
|
if( (int) matches[i].size() != radius )
|
|
badCount++;
|
|
|
|
else
|
|
{
|
|
int localBadCount = 0;
|
|
for ( int k = 0; k < radius; k++ )
|
|
{
|
|
DMatch& match = matches[i][k];
|
|
{
|
|
if( i < queryDescCount / 2 )
|
|
{
|
|
if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 0 ) )
|
|
localBadCount++;
|
|
}
|
|
|
|
else
|
|
{
|
|
if( ( match.queryIdx != (int) i ) || ( match.trainIdx != (int) i * countFactor + k ) || ( match.imgIdx != 1 ) )
|
|
localBadCount++;
|
|
}
|
|
}
|
|
}
|
|
|
|
badCount += localBadCount > 0 ? 1 : 0;
|
|
}
|
|
}
|
|
|
|
if( (float) badCount > (float) queryDescCount * badPart )
|
|
{
|
|
//curRes = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n",
|
|
(float) badCount / (float) queryDescCount );
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
|
}
|
|
}
|
|
}
|
|
|
|
void CV_BinaryDescriptorMatcherTest::run( int )
|
|
{
|
|
Mat query, train;
|
|
emptyDataTest();
|
|
generateData( query, train );
|
|
matchTest( query, train );
|
|
knnMatchTest( query, train );
|
|
radiusMatchTest( query, train );
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* Tests registrations *
|
|
\****************************************************************************************/
|
|
|
|
TEST( BinaryDescriptor_Matcher, regression)
|
|
{
|
|
CV_BinaryDescriptorMatcherTest test( 0.01f );
|
|
test.safe_run();
|
|
}
|
|
|
|
}} // namespace
|