mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-18 00:01:17 +08:00
145 lines
5.3 KiB
C++
145 lines
5.3 KiB
C++
#include <iostream>
|
|
#include <opencv2/core.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include "opencv2/imgcodecs.hpp"
|
|
#include <opencv2/highgui.hpp>
|
|
#include <opencv2/ml.hpp>
|
|
|
|
using namespace cv;
|
|
using namespace cv::ml;
|
|
using namespace std;
|
|
|
|
static void help()
|
|
{
|
|
cout<< "\n--------------------------------------------------------------------------" << endl
|
|
<< "This program shows Support Vector Machines for Non-Linearly Separable Data. " << endl
|
|
<< "--------------------------------------------------------------------------" << endl
|
|
<< endl;
|
|
}
|
|
|
|
int main()
|
|
{
|
|
help();
|
|
|
|
const int NTRAINING_SAMPLES = 100; // Number of training samples per class
|
|
const float FRAC_LINEAR_SEP = 0.9f; // Fraction of samples which compose the linear separable part
|
|
|
|
// Data for visual representation
|
|
const int WIDTH = 512, HEIGHT = 512;
|
|
Mat I = Mat::zeros(HEIGHT, WIDTH, CV_8UC3);
|
|
|
|
//--------------------- 1. Set up training data randomly ---------------------------------------
|
|
Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32F);
|
|
Mat labels (2*NTRAINING_SAMPLES, 1, CV_32S);
|
|
|
|
RNG rng(100); // Random value generation class
|
|
|
|
// Set up the linearly separable part of the training data
|
|
int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES);
|
|
|
|
//! [setup1]
|
|
// Generate random points for the class 1
|
|
Mat trainClass = trainData.rowRange(0, nLinearSamples);
|
|
// The x coordinate of the points is in [0, 0.4)
|
|
Mat c = trainClass.colRange(0, 1);
|
|
rng.fill(c, RNG::UNIFORM, Scalar(0), Scalar(0.4 * WIDTH));
|
|
// The y coordinate of the points is in [0, 1)
|
|
c = trainClass.colRange(1,2);
|
|
rng.fill(c, RNG::UNIFORM, Scalar(0), Scalar(HEIGHT));
|
|
|
|
// Generate random points for the class 2
|
|
trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES);
|
|
// The x coordinate of the points is in [0.6, 1]
|
|
c = trainClass.colRange(0 , 1);
|
|
rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH));
|
|
// The y coordinate of the points is in [0, 1)
|
|
c = trainClass.colRange(1,2);
|
|
rng.fill(c, RNG::UNIFORM, Scalar(0), Scalar(HEIGHT));
|
|
//! [setup1]
|
|
|
|
//------------------ Set up the non-linearly separable part of the training data ---------------
|
|
//! [setup2]
|
|
// Generate random points for the classes 1 and 2
|
|
trainClass = trainData.rowRange(nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples);
|
|
// The x coordinate of the points is in [0.4, 0.6)
|
|
c = trainClass.colRange(0,1);
|
|
rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH));
|
|
// The y coordinate of the points is in [0, 1)
|
|
c = trainClass.colRange(1,2);
|
|
rng.fill(c, RNG::UNIFORM, Scalar(0), Scalar(HEIGHT));
|
|
//! [setup2]
|
|
|
|
//------------------------- Set up the labels for the classes ---------------------------------
|
|
labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1
|
|
labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2
|
|
|
|
//------------------------ 2. Set up the support vector machines parameters --------------------
|
|
cout << "Starting training process" << endl;
|
|
//! [init]
|
|
Ptr<SVM> svm = SVM::create();
|
|
svm->setType(SVM::C_SVC);
|
|
svm->setC(0.1);
|
|
svm->setKernel(SVM::LINEAR);
|
|
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, (int)1e7, 1e-6));
|
|
//! [init]
|
|
|
|
//------------------------ 3. Train the svm ----------------------------------------------------
|
|
//! [train]
|
|
svm->train(trainData, ROW_SAMPLE, labels);
|
|
//! [train]
|
|
cout << "Finished training process" << endl;
|
|
|
|
//------------------------ 4. Show the decision regions ----------------------------------------
|
|
//! [show]
|
|
Vec3b green(0,100,0), blue(100,0,0);
|
|
for (int i = 0; i < I.rows; i++)
|
|
{
|
|
for (int j = 0; j < I.cols; j++)
|
|
{
|
|
Mat sampleMat = (Mat_<float>(1,2) << j, i);
|
|
float response = svm->predict(sampleMat);
|
|
|
|
if (response == 1) I.at<Vec3b>(i,j) = green;
|
|
else if (response == 2) I.at<Vec3b>(i,j) = blue;
|
|
}
|
|
}
|
|
//! [show]
|
|
|
|
//----------------------- 5. Show the training data --------------------------------------------
|
|
//! [show_data]
|
|
int thick = -1;
|
|
float px, py;
|
|
// Class 1
|
|
for (int i = 0; i < NTRAINING_SAMPLES; i++)
|
|
{
|
|
px = trainData.at<float>(i,0);
|
|
py = trainData.at<float>(i,1);
|
|
circle(I, Point( (int) px, (int) py ), 3, Scalar(0, 255, 0), thick);
|
|
}
|
|
// Class 2
|
|
for (int i = NTRAINING_SAMPLES; i <2*NTRAINING_SAMPLES; i++)
|
|
{
|
|
px = trainData.at<float>(i,0);
|
|
py = trainData.at<float>(i,1);
|
|
circle(I, Point( (int) px, (int) py ), 3, Scalar(255, 0, 0), thick);
|
|
}
|
|
//! [show_data]
|
|
|
|
//------------------------- 6. Show support vectors --------------------------------------------
|
|
//! [show_vectors]
|
|
thick = 2;
|
|
Mat sv = svm->getUncompressedSupportVectors();
|
|
|
|
for (int i = 0; i < sv.rows; i++)
|
|
{
|
|
const float* v = sv.ptr<float>(i);
|
|
circle(I, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thick);
|
|
}
|
|
//! [show_vectors]
|
|
|
|
imwrite("result.png", I); // save the Image
|
|
imshow("SVM for Non-Linear Training Data", I); // show it to the user
|
|
waitKey();
|
|
return 0;
|
|
}
|