mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-22 16:08:41 +08:00

Add additional image processing operators for Ascend NPU by utilizing DVPP #3608 The user base for [Ascend NPU](https://www.hiascend.com/en/) and programming with CANN is increasing rapidly, with a growing number of users joining each day. To facilitate the use of these users, this PR provides more support for Ascend backend operators. All operators this PR offers are using use DVPP as the computational unit. Digital Vision Pre-Processing (DVPP) is an image processing unit built into the Ascend AI processor. Its main functions include image and video encoding/decoding, as well as image cropping and scaling. The high-frequency operators with NPU as the backend and basic data structure AscendMat has been provided in #3552, while it still lacks many image processing operators. Moreover, only two interpolation algorithms for the resize operator are supported in #3552. In this PR, the bilinear interpolation algorithm and nearest neighbour interpolation algorithm are implemented for the resize operator, as well as the Ascend implementation of the copyMakeBorder operator. In addition, the serialization of image processing operations is widely used in the preprocessing and post-processing stages of computer vision deep learning methods. Therefore, providing integrated operators is very meaningful for improving the convenience of use for OpenCV and deep learning crossover users. For example, torchvision also provides similar operators: [RESIZED_CROP](https://pytorch.org/vision/stable/generated/torchvision.transforms.functional.resized_crop.html?highlight=resizedcrop). Thus, this PR also provides two serialization processing operators: cropResize and cropResizeMakeBorder. ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [N/A] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
327 lines
16 KiB
Python
327 lines
16 KiB
Python
# This file is part of OpenCV project.
|
|
# It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
# of this distribution and at http://opencv.org/license.html.
|
|
|
|
import cv2 as cv
|
|
from tests_common import NewOpenCVTests
|
|
import numpy as np
|
|
|
|
def genMask(mask, listx, listy):
|
|
for row in range(mask.shape[0]):
|
|
for col in range(mask.shape[1]):
|
|
if (row in listx and col in listx) or (row in listy and col in listy):
|
|
mask[row][col] = 1
|
|
mask = mask.astype(np.uint8)
|
|
return mask
|
|
|
|
|
|
mask = np.zeros((5, 5))
|
|
listx = [0, 1]
|
|
listy = [1, 2]
|
|
mask = genMask(mask, listx, listy)
|
|
|
|
|
|
class cannop_test(NewOpenCVTests):
|
|
def test_ascend(self):
|
|
cv.cann.initAcl()
|
|
cv.cann.initDvpp()
|
|
cv.cann.getDevice()
|
|
cv.cann.setDevice(0)
|
|
stream = cv.cann.AscendStream_Null()
|
|
cv.cann.wrapStream(id(stream))
|
|
cv.cann.resetDevice()
|
|
|
|
def test_arithmetic(self):
|
|
# input data
|
|
npMat1 = np.random.random((5, 5, 3)).astype(int)
|
|
npMat2 = np.random.random((5, 5, 3)).astype(int)
|
|
cv.cann.setDevice(0)
|
|
|
|
# ACLMat input data
|
|
aclMat1 = cv.cann.AscendMat()
|
|
aclMat1.upload(npMat1)
|
|
aclMat2 = cv.cann.AscendMat()
|
|
aclMat2.upload(npMat2)
|
|
aclMask = cv.cann.AscendMat()
|
|
aclMask.upload(mask)
|
|
aclMatDst = cv.cann.AscendMat(aclMat1.size(), aclMat1.type())
|
|
|
|
# InputArray interface test
|
|
self.assertTrue(np.allclose(cv.cann.add(
|
|
npMat1, npMat2), cv.add(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.subtract(
|
|
npMat1, npMat2), cv.subtract(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.multiply(
|
|
npMat1, npMat2, scale=2), cv.multiply(npMat1, npMat2, scale=2)))
|
|
self.assertTrue(np.allclose(cv.cann.divide(
|
|
npMat1, npMat2, scale=2), cv.divide(npMat1, npMat2, scale=2)))
|
|
|
|
# AscendMat interface test
|
|
self.assertTrue(np.allclose(cv.cann.add(aclMat1, aclMat2).download(),
|
|
cv.add(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.subtract(aclMat1, aclMat2).download(),
|
|
cv.subtract(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.multiply(aclMat1, aclMat2, scale=2).download(),
|
|
cv.multiply(npMat1, npMat2, scale=2)))
|
|
self.assertTrue(np.allclose(cv.cann.divide(aclMat1, aclMat2, scale=2).download(),
|
|
cv.divide(npMat1, npMat2, scale=2)))
|
|
|
|
# mask
|
|
self.assertTrue(np.allclose(cv.cann.add(
|
|
npMat1, npMat2, mask=mask), cv.add(npMat1, npMat2, mask=mask)))
|
|
self.assertTrue(np.allclose(cv.cann.subtract(
|
|
npMat1, npMat2, mask=mask), cv.subtract(npMat1, npMat2, mask=mask)))
|
|
self.assertTrue(np.allclose(cv.cann.multiply(npMat1, npMat2, scale=2),
|
|
cv.multiply(npMat1, npMat2, scale=2)))
|
|
self.assertTrue(np.allclose(cv.cann.divide(npMat1, npMat2, scale=2),
|
|
cv.divide(npMat1, npMat2, scale=2)))
|
|
self.assertTrue(np.allclose(cv.cann.addWeighted(npMat1, 2, npMat2, 4, 3),
|
|
cv.addWeighted(npMat1, 2, npMat2, 4, 3)))
|
|
|
|
self.assertTrue(np.allclose(cv.cann.add(aclMat1, aclMat2, mask=aclMask).download(),
|
|
cv.add(npMat1, npMat2, mask=mask)))
|
|
self.assertTrue(np.allclose(cv.cann.subtract(aclMat1, aclMat2, mask=aclMask).download(),
|
|
cv.subtract(npMat1, npMat2, mask=mask)))
|
|
self.assertTrue(np.allclose(cv.cann.multiply(aclMat1, aclMat2, scale=2).download(),
|
|
cv.multiply(npMat1, npMat2, scale=2)))
|
|
self.assertTrue(np.allclose(cv.cann.divide(aclMat1, aclMat2, scale=2).download(),
|
|
cv.divide(npMat1, npMat2, scale=2)))
|
|
self.assertTrue(np.allclose(cv.cann.addWeighted(aclMat1, 2, aclMat2, 4, 3).download(),
|
|
cv.addWeighted(npMat1, 2, npMat2, 4, 3)))
|
|
|
|
# stream
|
|
stream = cv.cann.AscendStream()
|
|
matDst = cv.cann.add(npMat1, npMat2, stream=stream)
|
|
stream.waitForCompletion()
|
|
self.assertTrue(np.allclose(matDst, cv.add(npMat1, npMat2)))
|
|
matDst = cv.cann.add(npMat1, npMat2, mask=mask, stream=stream)
|
|
stream.waitForCompletion()
|
|
self.assertTrue(np.allclose(matDst, cv.add(npMat1, npMat2, mask=mask)))
|
|
matDst = cv.cann.subtract(npMat1, npMat2, mask=mask, stream=stream)
|
|
stream.waitForCompletion()
|
|
self.assertTrue(np.allclose(
|
|
matDst, cv.subtract(npMat1, npMat2, mask=mask)))
|
|
|
|
# stream AsceendMat
|
|
aclMatDst = cv.cann.add(aclMat1, aclMat2, stream=stream)
|
|
stream.waitForCompletion()
|
|
self.assertTrue(np.allclose(aclMatDst.download(),
|
|
cv.add(npMat1, npMat2)))
|
|
|
|
aclMatDst = cv.cann.add(aclMat1, aclMat2, mask=aclMask, stream=stream)
|
|
stream.waitForCompletion()
|
|
self.assertTrue(np.allclose(aclMatDst.download(),
|
|
cv.add(npMat1, npMat2, mask=mask)))
|
|
|
|
aclMatDst = cv.cann.subtract(aclMat1, aclMat2, mask=aclMask, stream=stream)
|
|
stream.waitForCompletion()
|
|
self.assertTrue(np.allclose(aclMatDst.download(),
|
|
cv.subtract(npMat1, npMat2, mask=mask)))
|
|
|
|
cv.cann.resetDevice()
|
|
|
|
def test_logical(self):
|
|
npMat1 = np.random.random((5, 5, 3)).astype(np.uint16)
|
|
npMat2 = np.random.random((5, 5, 3)).astype(np.uint16)
|
|
cv.cann.setDevice(0)
|
|
|
|
# ACLMat input data
|
|
aclMat1 = cv.cann.AscendMat()
|
|
aclMat1.upload(npMat1)
|
|
aclMat2 = cv.cann.AscendMat()
|
|
aclMat2.upload(npMat2)
|
|
aclMask = cv.cann.AscendMat()
|
|
aclMask.upload(mask)
|
|
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_or(npMat1, npMat2),
|
|
cv.bitwise_or(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_or(
|
|
npMat1, npMat2), cv.bitwise_or(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_and(npMat1, npMat2),
|
|
cv.bitwise_and(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_and(
|
|
npMat1, npMat2), cv.bitwise_and(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_xor(npMat1, npMat2),
|
|
cv.bitwise_xor(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_xor(
|
|
npMat1, npMat2), cv.bitwise_xor(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_not(npMat1),
|
|
cv.bitwise_not(npMat1)))
|
|
self.assertTrue(np.allclose(
|
|
cv.cann.bitwise_not(npMat1), cv.bitwise_not(npMat1)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_and(npMat1, npMat2, mask=mask),
|
|
cv.bitwise_and(npMat1, npMat2, mask=mask)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_or(npMat1, npMat2, mask=mask),
|
|
cv.bitwise_or(npMat1, npMat2, mask=mask)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_not(npMat1, mask=mask),
|
|
cv.bitwise_not(npMat1, mask=mask)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_xor(npMat1, npMat2, mask=mask),
|
|
cv.bitwise_xor(npMat1, npMat2, mask=mask)))
|
|
|
|
# AscendMat interface
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_or(aclMat1, aclMat2).download(),
|
|
cv.bitwise_or(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_or(aclMat1, aclMat2).download(),
|
|
cv.bitwise_or(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_and(aclMat1, aclMat2).download(),
|
|
cv.bitwise_and(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_and(
|
|
aclMat1, aclMat2).download(), cv.bitwise_and(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_xor(aclMat1, aclMat2).download(),
|
|
cv.bitwise_xor(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_xor(
|
|
aclMat1, aclMat2).download(), cv.bitwise_xor(npMat1, npMat2)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_not(aclMat1).download(),
|
|
cv.bitwise_not(npMat1)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_not(aclMat1).download(),
|
|
cv.bitwise_not(npMat1)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_and(aclMat1, aclMat2, mask=aclMask).download(),
|
|
cv.bitwise_and(npMat1, npMat2, mask=mask)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_or(aclMat1, aclMat2, mask=aclMask).download(),
|
|
cv.bitwise_or(npMat1, npMat2, mask=mask)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_not(aclMat1, mask=aclMask).download(),
|
|
cv.bitwise_not(npMat1, mask=mask)))
|
|
self.assertTrue(np.allclose(cv.cann.bitwise_xor(aclMat1, aclMat2, mask=aclMask).download(),
|
|
cv.bitwise_xor(npMat1, npMat2, mask=mask)))
|
|
cv.cann.resetDevice()
|
|
|
|
def test_imgproc(self):
|
|
npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8)
|
|
cv.cann.setDevice(0)
|
|
aclMat = cv.cann.AscendMat()
|
|
aclMatDst = aclMat
|
|
aclMat.upload(npMat)
|
|
|
|
# TODO try pass out param, not use return value.
|
|
# merge & split
|
|
self.assertTrue(np.allclose(
|
|
cv.cann.merge(cv.cann.split(npMat)).download(), npMat))
|
|
self.assertTrue(np.allclose(
|
|
cv.cann.merge(cv.cann.split(aclMat)).download(), npMat))
|
|
|
|
# transpose
|
|
self.assertTrue(np.allclose(
|
|
cv.cann.transpose(npMat), cv.transpose(npMat)))
|
|
self.assertTrue(np.allclose(
|
|
cv.cann.transpose(aclMat).download(), cv.transpose(npMat)))
|
|
|
|
# crop
|
|
w_off, h_off, crop_w, crop_h = 0, 0, 64, 64
|
|
roi = [w_off, h_off, crop_w, crop_h]
|
|
self.assertTrue(np.allclose(
|
|
cv.cann.crop(npMat, roi).download(), npMat[w_off:crop_w, h_off:crop_h]))
|
|
self.assertTrue(np.allclose(
|
|
cv.cann.crop(aclMat, roi).download(), npMat[w_off:crop_w, h_off:crop_h]))
|
|
|
|
# resize
|
|
dstSize = np.array([crop_w, crop_h])
|
|
aclMat32F = cv.cann.AscendMat()
|
|
aclMat32F.upload(npMat.astype(np.float32))
|
|
self.assertTrue(np.allclose(cv.cann.resize(npMat.astype(np.float32), dstSize, 0, 0, 3),
|
|
cv.resize(npMat.astype(np.float32), dstSize, 0, 0, 3)))
|
|
self.assertTrue(np.allclose(cv.cann.resize(aclMat32F, dstSize, 0, 0, 3).download(),
|
|
cv.resize(npMat.astype(np.float32), dstSize, 0, 0, 3)))
|
|
# flip
|
|
flipMode = [0, 1, -1]
|
|
for fMode in flipMode:
|
|
self.assertTrue(np.allclose(cv.cann.flip(
|
|
npMat, fMode), cv.flip(npMat, fMode)))
|
|
self.assertTrue(np.allclose(cv.cann.flip(
|
|
aclMat, fMode).download(), cv.flip(npMat, fMode)))
|
|
|
|
# rotate
|
|
rotateMode = [0, 1, 2]
|
|
for rMode in rotateMode:
|
|
self.assertTrue(np.allclose(cv.cann.rotate(
|
|
npMat, rMode), cv.rotate(npMat, rMode)))
|
|
self.assertTrue(np.allclose(cv.cann.rotate(
|
|
aclMat, rMode).download(), cv.rotate(npMat, rMode)))
|
|
|
|
# cvtColcor
|
|
cvtModeC1 = [cv.COLOR_GRAY2BGR, cv.COLOR_GRAY2BGRA]
|
|
cvtModeC3 = [cv.COLOR_BGR2GRAY, cv.COLOR_BGRA2BGR, cv.COLOR_BGR2RGBA, cv.COLOR_RGBA2BGR,
|
|
cv.COLOR_BGR2RGB, cv.COLOR_BGRA2RGBA, cv.COLOR_RGB2GRAY, cv.COLOR_BGRA2GRAY,
|
|
cv.COLOR_RGBA2GRAY, cv.COLOR_BGR2BGRA, cv.COLOR_BGR2YUV, cv.COLOR_RGB2YUV,
|
|
cv.COLOR_YUV2BGR, cv.COLOR_YUV2RGB, cv.COLOR_BGR2YCrCb, cv.COLOR_RGB2YCrCb,
|
|
cv.COLOR_YCrCb2BGR, cv.COLOR_YCrCb2RGB, cv.COLOR_BGR2XYZ, cv.COLOR_RGB2XYZ,
|
|
cv.COLOR_XYZ2BGR, cv.COLOR_XYZ2RGB,]
|
|
for cvtM in cvtModeC3:
|
|
self.assertTrue(np.allclose(cv.cann.cvtColor(
|
|
npMat, cvtM), cv.cvtColor(npMat, cvtM), 1))
|
|
self.assertTrue(np.allclose(cv.cann.cvtColor(
|
|
aclMat, cvtM).download(), cv.cvtColor(npMat, cvtM), 1))
|
|
|
|
npMatC1 = (np.random.random((128, 128, 1)) * 255).astype(np.uint8)
|
|
aclMatC1 = cv.cann.AscendMat()
|
|
aclMatC1.upload(npMatC1)
|
|
for cvtM in cvtModeC1:
|
|
self.assertTrue(np.allclose(cv.cann.cvtColor(
|
|
npMatC1, cvtM), cv.cvtColor(npMatC1, cvtM), 1))
|
|
self.assertTrue(np.allclose(cv.cann.cvtColor(
|
|
aclMatC1, cvtM).download(), cv.cvtColor(npMatC1, cvtM), 1))
|
|
|
|
# threshold
|
|
threshType = [cv.THRESH_BINARY, cv.THRESH_BINARY_INV,
|
|
cv.THRESH_TRUNC, cv.THRESH_TOZERO, cv.THRESH_TOZERO_INV]
|
|
for tType in threshType:
|
|
cvRet, cvThresh = cv.threshold(
|
|
npMat.astype(np.uint8), 127, 255, tType)
|
|
cannRet, cannThresh = cv.cann.threshold(
|
|
npMat.astype(np.float32), 127, 255, tType)
|
|
self.assertTrue(np.allclose(cvThresh, cannThresh))
|
|
self.assertTrue(np.allclose(cvRet, cannRet))
|
|
|
|
aclMat.upload(npMat.astype(np.float32))
|
|
cannRet, cannThresh = cv.cann.threshold(
|
|
aclMat, 127, 255, tType)
|
|
self.assertTrue(np.allclose(cvThresh, cannThresh.download()))
|
|
self.assertTrue(np.allclose(cvRet, cannRet))
|
|
|
|
npMat = (np.random.random((1280, 1024, 3)) * 255).astype(np.uint8)
|
|
w_off, h_off, crop_w, crop_h = 0, 0, 512, 384
|
|
roi = [w_off, h_off, crop_w, crop_h]
|
|
aclMat = cv.cann.AscendMat()
|
|
aclMat.upload(npMat)
|
|
|
|
# resize
|
|
dstSize = np.array([crop_w, crop_h])
|
|
self.assertTrue(np.allclose(cv.cann.resize(npMat, dstSize, 0, 0, 1),
|
|
cv.resize(npMat, dstSize, 0, 0, 1)))
|
|
self.assertTrue(np.allclose(cv.cann.resize(aclMat, dstSize, 0, 0, 1).download(),
|
|
cv.resize(npMat, dstSize, 0, 0, 1)))
|
|
# cropResize
|
|
self.assertTrue(np.allclose(cv.cann.cropResize(npMat, roi, dstSize, 0, 0, 1),
|
|
cv.resize(npMat[h_off:crop_h, w_off:crop_w], dstSize, 0, 0, 1)), 0)
|
|
self.assertTrue(np.allclose(cv.cann.cropResize(aclMat, roi, dstSize, 0, 0, 1).download(),
|
|
cv.resize(npMat[h_off:crop_h, w_off:crop_w], dstSize, 0, 0, 1)), 0)
|
|
|
|
# cropResizeMakeBorder
|
|
# TODO cv.copyMakeBorder ignores borderColorValue param; find the reason and fix it
|
|
borderColorValue = (100, 0, 255)
|
|
top, bottom, left, right = 32, 0, 10, 0
|
|
borderTypes = [0, 1]
|
|
|
|
for borderType in borderTypes:
|
|
self.assertTrue(np.allclose(cv.cann.cropResizeMakeBorder(npMat, roi, dstSize,
|
|
0, 0, 1, top, left, borderType),
|
|
cv.copyMakeBorder(cv.resize(npMat[h_off:crop_h, w_off:crop_w],
|
|
dstSize, 0, 0, 1), top, bottom, left, right, borderType), 1))
|
|
self.assertTrue(np.allclose(cv.cann.cropResizeMakeBorder(aclMat, roi, dstSize,
|
|
0, 0, 1, top, left, borderType).download(),
|
|
cv.copyMakeBorder(cv.resize(npMat[h_off:crop_h, w_off:crop_w],
|
|
dstSize, 0, 0, 1), top, bottom, left, right, borderType), 1))
|
|
|
|
# copyMakeBorder
|
|
for borderType in borderTypes:
|
|
self.assertTrue(np.allclose(cv.cann.copyMakeBorder(npMat, top, bottom, left, right,
|
|
borderType),
|
|
cv.copyMakeBorder(npMat, top, bottom, left, right, borderType)))
|
|
self.assertTrue(np.allclose(cv.cann.copyMakeBorder(aclMat, top, bottom, left, right,
|
|
borderType).download(),
|
|
cv.copyMakeBorder(npMat, top, bottom, left, right, borderType)))
|
|
|
|
cv.cann.resetDevice()
|
|
|
|
if __name__ == '__main__':
|
|
NewOpenCVTests.bootstrap()
|