mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-21 06:11:09 +08:00
161 lines
5.6 KiB
C++
161 lines
5.6 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "perf_precomp.hpp"
|
|
namespace opencv_test
|
|
{
|
|
namespace
|
|
{
|
|
std::string qrcode_model_path[] = {"", "dnn/wechat_2021-01"};
|
|
|
|
std::string qrcode_images_name[] = {
|
|
"version_1_top.jpg",
|
|
"version_2_left.jpg", "version_2_up.jpg", "version_2_top.jpg",
|
|
"version_3_down.jpg", "version_3_top.jpg",
|
|
"version_4_top.jpg",
|
|
"version_5_down.jpg", "version_5_left.jpg", "version_5_up.jpg", "version_5_top.jpg",
|
|
"russian.jpg", "kanji.jpg", "link_wiki_cv.jpg"};
|
|
|
|
// NB: exclude "2_qrcodes.png" as this image appears too difficult, so that this test fails on it
|
|
std::string qrcode_images_multiple[] = {/*"2_qrcodes.png",*/ "3_qrcodes.png", "3_close_qrcodes.png",
|
|
"4_qrcodes.png", "5_qrcodes.png", "7_qrcodes.png"};
|
|
|
|
WeChatQRCode createQRDetectorWithDNN(std::string& model_path)
|
|
{
|
|
string path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel;
|
|
if (!model_path.empty())
|
|
{
|
|
path_detect_prototxt = findDataFile(model_path + "/detect.prototxt", false);
|
|
path_detect_caffemodel = findDataFile(model_path + "/detect.caffemodel", false);
|
|
path_sr_prototxt = findDataFile(model_path + "/sr.prototxt", false);
|
|
path_sr_caffemodel = findDataFile(model_path + "/sr.caffemodel", false);
|
|
}
|
|
return WeChatQRCode(path_detect_prototxt, path_detect_caffemodel, path_sr_prototxt, path_sr_caffemodel);
|
|
}
|
|
|
|
typedef ::perf::TestBaseWithParam< tuple< std::string,std::string > > Perf_Objdetect_QRCode;
|
|
|
|
PERF_TEST_P_(Perf_Objdetect_QRCode, detect_and_decode)
|
|
{
|
|
std::string model_path = get<0>(GetParam());
|
|
std::string name_current_image = get<1>(GetParam());
|
|
const std::string root = "cv/qrcode/";
|
|
|
|
std::string image_path = findDataFile(root + name_current_image);
|
|
Mat src = imread(image_path, IMREAD_GRAYSCALE), straight_barcode;
|
|
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
|
|
|
|
std::vector< Mat > corners;
|
|
std::vector< String > decoded_info;
|
|
auto detector = createQRDetectorWithDNN(model_path);
|
|
// warmup
|
|
if (!model_path.empty())
|
|
{
|
|
decoded_info = detector.detectAndDecode(src, corners);
|
|
}
|
|
TEST_CYCLE()
|
|
{
|
|
decoded_info = detector.detectAndDecode(src, corners);
|
|
ASSERT_FALSE(decoded_info[0].empty());
|
|
}
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
typedef ::perf::TestBaseWithParam< tuple< std::string,std::string > > Perf_Objdetect_QRCode_Multi;
|
|
|
|
PERF_TEST_P_(Perf_Objdetect_QRCode_Multi, detect_and_decode)
|
|
{
|
|
std::string model_path = get<0>(GetParam());
|
|
std::string name_current_image = get<1>(GetParam());
|
|
const std::string root = "cv/qrcode/multiple/";
|
|
|
|
std::string image_path = findDataFile(root + name_current_image);
|
|
Mat src = imread(image_path, IMREAD_GRAYSCALE), straight_barcode;
|
|
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
|
|
|
|
std::vector< Mat > corners;
|
|
std::vector< String > decoded_info;
|
|
auto detector = createQRDetectorWithDNN(model_path);
|
|
// warmup
|
|
if (!model_path.empty())
|
|
{
|
|
decoded_info = detector.detectAndDecode(src, corners);
|
|
}
|
|
TEST_CYCLE()
|
|
{
|
|
decoded_info = detector.detectAndDecode(src, corners);
|
|
ASSERT_TRUE(decoded_info.size());
|
|
}
|
|
for(size_t i = 0; i < decoded_info.size(); i++)
|
|
{
|
|
ASSERT_FALSE(decoded_info[i].empty());
|
|
}
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
typedef ::perf::TestBaseWithParam< tuple<std::string, std::string, Size> >Perf_Objdetect_Not_QRCode;
|
|
|
|
PERF_TEST_P_(Perf_Objdetect_Not_QRCode, detect_and_decode)
|
|
{
|
|
std::string model_path = get<0>(GetParam());
|
|
std::string type_gen = get<1>(GetParam());
|
|
Size resolution = get<2>(GetParam());
|
|
Mat not_qr_code(resolution, CV_8UC1, Scalar(0));
|
|
if (type_gen == "random")
|
|
{
|
|
RNG rng;
|
|
rng.fill(not_qr_code, RNG::UNIFORM, Scalar(0), Scalar(1));
|
|
}
|
|
else if (type_gen == "chessboard")
|
|
{
|
|
uint8_t next_pixel = 255;
|
|
for (int j = 0; j < not_qr_code.cols; j++)
|
|
{
|
|
not_qr_code.ptr<uchar>(0)[j] = next_pixel;
|
|
next_pixel = 255 - next_pixel;
|
|
}
|
|
for (int r = not_qr_code.cols; r < not_qr_code.rows * not_qr_code.cols; r++)
|
|
{
|
|
int i = r / not_qr_code.cols;
|
|
int j = r % not_qr_code.cols;
|
|
not_qr_code.ptr<uchar>(i)[j] = 255 - not_qr_code.ptr<uchar>(i-1)[j];
|
|
}
|
|
}
|
|
std::vector< Mat > corners;
|
|
std::vector< String > decoded_info;
|
|
auto detector = createQRDetectorWithDNN(model_path);
|
|
// warmup
|
|
if (!model_path.empty())
|
|
{
|
|
decoded_info = detector.detectAndDecode(not_qr_code, corners);
|
|
}
|
|
TEST_CYCLE()
|
|
{
|
|
decoded_info = detector.detectAndDecode(not_qr_code, corners);
|
|
ASSERT_FALSE(decoded_info.size());
|
|
}
|
|
SANITY_CHECK_NOTHING();
|
|
}
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Perf_Objdetect_QRCode,
|
|
::testing::Combine(
|
|
::testing::ValuesIn(qrcode_model_path),
|
|
::testing::ValuesIn(qrcode_images_name)
|
|
));
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Perf_Objdetect_QRCode_Multi,
|
|
::testing::Combine(
|
|
::testing::ValuesIn(qrcode_model_path),
|
|
::testing::ValuesIn(qrcode_images_multiple)
|
|
));
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, Perf_Objdetect_Not_QRCode,
|
|
::testing::Combine(
|
|
::testing::ValuesIn(qrcode_model_path),
|
|
::testing::Values("zero", "random", "chessboard"),
|
|
::testing::Values(Size(640, 480), Size(1280, 720))
|
|
));
|
|
|
|
} // namespace
|
|
} // namespace
|