mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-21 06:11:09 +08:00
179 lines
7.0 KiB
C++
179 lines
7.0 KiB
C++
/*///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "opencv2/opencv_modules.hpp"
|
|
#include "gtrTracker.hpp"
|
|
|
|
|
|
namespace cv
|
|
{
|
|
|
|
TrackerGOTURN::Params::Params(){}
|
|
|
|
void TrackerGOTURN::Params::read(const cv::FileNode& /*fn*/){}
|
|
|
|
void TrackerGOTURN::Params::write(cv::FileStorage& /*fs*/) const {}
|
|
|
|
|
|
Ptr<TrackerGOTURN> TrackerGOTURN::create(const TrackerGOTURN::Params ¶meters)
|
|
{
|
|
#ifdef HAVE_OPENCV_DNN
|
|
return Ptr<gtr::TrackerGOTURNImpl>(new gtr::TrackerGOTURNImpl(parameters));
|
|
#else
|
|
(void)(parameters);
|
|
CV_Error(cv::Error::StsNotImplemented , "to use GOTURN, the tracking module needs to be built with opencv_dnn !");
|
|
#endif
|
|
}
|
|
Ptr<TrackerGOTURN> TrackerGOTURN::create()
|
|
{
|
|
return TrackerGOTURN::create(TrackerGOTURN::Params());
|
|
}
|
|
|
|
|
|
#ifdef HAVE_OPENCV_DNN
|
|
namespace gtr
|
|
{
|
|
|
|
class TrackerGOTURNModel : public TrackerModel{
|
|
public:
|
|
TrackerGOTURNModel(TrackerGOTURN::Params){}
|
|
Rect2d getBoundingBox(){ return boundingBox_; }
|
|
void setBoudingBox(Rect2d boundingBox){ boundingBox_ = boundingBox; }
|
|
Mat getImage(){ return image_; }
|
|
void setImage(const Mat& image){ image.copyTo(image_); }
|
|
protected:
|
|
Rect2d boundingBox_;
|
|
Mat image_;
|
|
void modelEstimationImpl(const std::vector<Mat>&) CV_OVERRIDE {}
|
|
void modelUpdateImpl() CV_OVERRIDE {}
|
|
};
|
|
|
|
TrackerGOTURNImpl::TrackerGOTURNImpl(const TrackerGOTURN::Params ¶meters) :
|
|
params(parameters){
|
|
isInit = false;
|
|
};
|
|
|
|
void TrackerGOTURNImpl::read(const cv::FileNode& fn)
|
|
{
|
|
params.read(fn);
|
|
}
|
|
|
|
void TrackerGOTURNImpl::write(cv::FileStorage& fs) const
|
|
{
|
|
params.write(fs);
|
|
}
|
|
|
|
bool TrackerGOTURNImpl::initImpl(const Mat& image, const Rect2d& boundingBox)
|
|
{
|
|
//Make a simple model from frame and bounding box
|
|
model = Ptr<TrackerGOTURNModel>(new TrackerGOTURNModel(params));
|
|
((TrackerGOTURNModel*)static_cast<TrackerModel*>(model))->setImage(image);
|
|
((TrackerGOTURNModel*)static_cast<TrackerModel*>(model))->setBoudingBox(boundingBox);
|
|
|
|
//Load GOTURN architecture from *.prototxt and pretrained weights from *.caffemodel
|
|
String modelTxt = "goturn.prototxt";
|
|
String modelBin = "goturn.caffemodel";
|
|
net = dnn::readNetFromCaffe(modelTxt, modelBin);
|
|
return true;
|
|
}
|
|
|
|
bool TrackerGOTURNImpl::updateImpl(const Mat& image, Rect2d& boundingBox)
|
|
{
|
|
int INPUT_SIZE = 227;
|
|
//Using prevFrame & prevBB from model and curFrame GOTURN calculating curBB
|
|
Mat curFrame = image.clone();
|
|
Mat prevFrame = ((TrackerGOTURNModel*)static_cast<TrackerModel*>(model))->getImage();
|
|
Rect2d prevBB = ((TrackerGOTURNModel*)static_cast<TrackerModel*>(model))->getBoundingBox();
|
|
Rect2d curBB;
|
|
|
|
float padTargetPatch = 2.0;
|
|
Rect2f searchPatchRect, targetPatchRect;
|
|
Point2f currCenter, prevCenter;
|
|
Mat prevFramePadded, curFramePadded;
|
|
Mat searchPatch, targetPatch;
|
|
|
|
prevCenter.x = (float)(prevBB.x + prevBB.width / 2);
|
|
prevCenter.y = (float)(prevBB.y + prevBB.height / 2);
|
|
|
|
targetPatchRect.width = (float)(prevBB.width*padTargetPatch);
|
|
targetPatchRect.height = (float)(prevBB.height*padTargetPatch);
|
|
targetPatchRect.x = (float)(prevCenter.x - prevBB.width*padTargetPatch / 2.0 + targetPatchRect.width);
|
|
targetPatchRect.y = (float)(prevCenter.y - prevBB.height*padTargetPatch / 2.0 + targetPatchRect.height);
|
|
|
|
copyMakeBorder(prevFrame, prevFramePadded, (int)targetPatchRect.height, (int)targetPatchRect.height, (int)targetPatchRect.width, (int)targetPatchRect.width, BORDER_REPLICATE);
|
|
targetPatch = prevFramePadded(targetPatchRect).clone();
|
|
|
|
copyMakeBorder(curFrame, curFramePadded, (int)targetPatchRect.height, (int)targetPatchRect.height, (int)targetPatchRect.width, (int)targetPatchRect.width, BORDER_REPLICATE);
|
|
searchPatch = curFramePadded(targetPatchRect).clone();
|
|
|
|
//Preprocess
|
|
//Resize
|
|
resize(targetPatch, targetPatch, Size(INPUT_SIZE, INPUT_SIZE), 0, 0, INTER_LINEAR_EXACT);
|
|
resize(searchPatch, searchPatch, Size(INPUT_SIZE, INPUT_SIZE), 0, 0, INTER_LINEAR_EXACT);
|
|
|
|
//Convert to Float type and subtract mean
|
|
Mat targetBlob = dnn::blobFromImage(targetPatch, 1.0f, Size(), Scalar::all(128), false);
|
|
Mat searchBlob = dnn::blobFromImage(searchPatch, 1.0f, Size(), Scalar::all(128), false);
|
|
|
|
net.setInput(targetBlob, "data1");
|
|
net.setInput(searchBlob, "data2");
|
|
|
|
Mat resMat = net.forward("scale").reshape(1, 1);
|
|
|
|
curBB.x = targetPatchRect.x + (resMat.at<float>(0) * targetPatchRect.width / INPUT_SIZE) - targetPatchRect.width;
|
|
curBB.y = targetPatchRect.y + (resMat.at<float>(1) * targetPatchRect.height / INPUT_SIZE) - targetPatchRect.height;
|
|
curBB.width = (resMat.at<float>(2) - resMat.at<float>(0)) * targetPatchRect.width / INPUT_SIZE;
|
|
curBB.height = (resMat.at<float>(3) - resMat.at<float>(1)) * targetPatchRect.height / INPUT_SIZE;
|
|
|
|
//Predicted BB
|
|
boundingBox = curBB;
|
|
|
|
//Set new model image and BB from current frame
|
|
((TrackerGOTURNModel*)static_cast<TrackerModel*>(model))->setImage(curFrame);
|
|
((TrackerGOTURNModel*)static_cast<TrackerModel*>(model))->setBoudingBox(curBB);
|
|
|
|
return true;
|
|
}
|
|
|
|
}
|
|
#endif // OPENCV_HAVE_DNN
|
|
|
|
}
|