1
0
mirror of https://github.com/opencv/opencv_contrib.git synced 2025-10-16 22:35:51 +08:00
Files
opencv_contrib/modules/optflow/samples/gpc_train_middlebury.py
Vladislav Samsonov ac62d70f97 [GSoC] Implementation of the Global Patch Collider and demo for PCAFlow (#752)
* Minor fixes

* Start adding correspondence finding

* Added finding of correspondences using GPC

* New evaluation tool for GPC

* Changed default parameters

* Display ground truth in the evaluation tool

* Added training tool for MPI Sintel dataset

* Added the training tool for Middlebury dataset

* Added some OpenCL optimization

* Added explanatory notes

* Minor improvements: time measurements + little ocl optimization

* Added demos

* Fixed warnings

* Make parameter struct assignable

* Fix warning

* Proper command line argument usage

* Prettified training tool, added parameters

* Fixed VS warning

* Fixed VS warning

* Using of compressed forest.yml.gz files by default to save space

* Added OpenCL flag to the evaluation tool

* Updated documentation

* Major speed and memory improvements:
1) Added new (optional) type of patch descriptors which are much faster. Retraining with option --descriptor-type=1 is required.
2) Got rid of hash table for descriptors, less memory usage.

* Fixed various floating point errors related to precision.
SIMD for dot product, forest traversing is a little bit faster now.

* Tolerant floating point comparison

* Triplets

* Added comment

* Choosing negative sample among nearest neighbors

* Fix warning

* Usage of parallel_for_() in critical places. Performance improvments.

* Simulated annealing heuristic

* Moved OpenCL kernel to separate file

* Moved implementation to source file

* Added basic accuracy tests for GPC and PCAFlow

* Fixing warnings

* Test accuracy constraints were too strict

* Test accuracy constraints were too strict

* Make tests more lightweight
2016-10-17 18:15:22 +03:00

59 lines
2.0 KiB
Python

import argparse
import glob
import os
import subprocess
def execute(cmd):
popen = subprocess.Popen(cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
for stdout_line in iter(popen.stdout.readline, ''):
print(stdout_line.rstrip())
for stderr_line in iter(popen.stderr.readline, ''):
print(stderr_line.rstrip())
popen.stdout.close()
popen.stderr.close()
return_code = popen.wait()
if return_code != 0:
raise subprocess.CalledProcessError(return_code, cmd)
def main():
parser = argparse.ArgumentParser(
description='Train Global Patch Collider using Middlebury dataset')
parser.add_argument(
'--bin_path',
help='Path to the training executable (example_optflow_gpc_train)',
required=True)
parser.add_argument('--dataset_path',
help='Path to the directory with frames',
required=True)
parser.add_argument('--gt_path',
help='Path to the directory with ground truth flow',
required=True)
parser.add_argument('--descriptor_type',
help='Descriptor type',
type=int,
default=0)
args = parser.parse_args()
seq = glob.glob(os.path.join(args.dataset_path, '*'))
seq.sort()
input_files = []
for s in seq:
if os.path.isdir(s):
seq_name = os.path.basename(s)
frames = glob.glob(os.path.join(s, 'frame*.png'))
frames.sort()
assert (len(frames) == 2)
assert (os.path.basename(frames[0]) == 'frame10.png')
assert (os.path.basename(frames[1]) == 'frame11.png')
gt_flow = os.path.join(args.gt_path, seq_name, 'flow10.flo')
if os.path.isfile(gt_flow):
input_files += [frames[0], frames[1], gt_flow]
execute([args.bin_path, '--descriptor-type=%d' % args.descriptor_type] + input_files)
if __name__ == '__main__':
main()