1
0
mirror of https://github.com/opencv/opencv_contrib.git synced 2025-10-19 11:21:39 +08:00
Files
opencv_contrib/modules/ximgproc/samples/fourier_descriptors_demo.py
LaurentBerger a798127837 Merge pull request #1634 from LaurentBerger:FD_bug
* remove bug when src is vector Point2i in FourierDescriptors

* remove unused code and comments
2018-05-17 19:37:57 +03:00

170 lines
6.9 KiB
Python

import numpy as np
import cv2 as cv
import math
class ThParameters:
def __init__(self):
self.levelNoise=6
self.angle=45
self.scale10=5
self.origin=10
self.xg=150
self.yg=150
self.update=True
def UpdateShape(x ):
p.update = True
def union(a,b):
x = min(a[0], b[0])
y = min(a[1], b[1])
w = max(a[0]+a[2], b[0]+b[2]) - x
h = max(a[1]+a[3], b[1]+b[3]) - y
return (x, y, w, h)
def intersection(a,b):
x = max(a[0], b[0])
y = max(a[1], b[1])
w = min(a[0]+a[2], b[0]+b[2]) - x
h = min(a[1]+a[3], b[1]+b[3]) - y
if w<0 or h<0: return () # or (0,0,0,0) ?
return (x, y, w, h)
def NoisyPolygon(pRef,n):
# vector<Point> c
p = pRef;
# vector<vector<Point> > contour;
p = p+n*np.random.random_sample((p.shape[0],p.shape[1]))-n/2.0
if (n==0):
return p
c = np.empty(shape=[0, 2])
minX = p[0][0]
maxX = p[0][0]
minY = p[0][1]
maxY = p[0][1]
for i in range( 0,p.shape[0]):
next = i + 1;
if (next == p.shape[0]):
next = 0;
u = p[next] - p[i]
d = int(cv.norm(u))
a = np.arctan2(u[1], u[0])
step = 1
if (n != 0):
step = d // n
for j in range( 1,int(d),int(max(step, 1))):
while True:
pAct = (u*j) / (d)
r = n*np.random.random_sample()
theta = a + 2*math.pi*np.random.random_sample()
# pNew = Point(Point2d(r*cos(theta) + pAct.x + p[i].x, r*sin(theta) + pAct.y + p[i].y));
pNew = np.array([(r*np.cos(theta) + pAct[0] + p[i][0], r*np.sin(theta) + pAct[1] + p[i][1])])
if (pNew[0][0]>=0 and pNew[0][1]>=0):
break
if (pNew[0][0]<minX):
minX = pNew[0][0]
if (pNew[0][0]>maxX):
maxX = pNew[0][0]
if (pNew[0][1]<minY):
minY = pNew[0][1]
if (pNew[0][1]>maxY):
maxY = pNew[0][1]
c = np.append(c,pNew,axis = 0)
return c
#static vector<Point> NoisyPolygon(vector<Point> pRef, double n);
#static void UpdateShape(int , void *r);
#static void AddSlider(String sliderName, String windowName, int minSlider, int maxSlider, int valDefault, int *valSlider, void(*f)(int, void *), void *r);
def AddSlider(sliderName,windowName,minSlider,maxSlider,valDefault, update):
cv.createTrackbar(sliderName, windowName, valDefault,maxSlider-minSlider+1, update)
cv.setTrackbarMin(sliderName, windowName, minSlider)
cv.setTrackbarMax(sliderName, windowName, maxSlider)
cv.setTrackbarPos(sliderName, windowName, valDefault)
# vector<Point> ctrRef;
# vector<Point> ctrRotate, ctrNoisy, ctrNoisyRotate, ctrNoisyRotateShift;
# // build a shape with 5 vertex
ctrRef = np.array([(250,250),(400, 250),(400, 300),(250, 300),(180, 270)])
cg = np.mean(ctrRef,axis=0)
p=ThParameters()
cv.namedWindow("FD Curve matching");
# A rotation with center at (150,150) of angle 45 degrees and a scaling of 5/10
AddSlider("Noise", "FD Curve matching", 0, 20, p.levelNoise, UpdateShape)
AddSlider("Angle", "FD Curve matching", 0, 359, p.angle, UpdateShape)
AddSlider("Scale", "FD Curve matching", 5, 100, p.scale10, UpdateShape)
AddSlider("Origin", "FD Curve matching", 0, 100, p.origin, UpdateShape)
AddSlider("Xg", "FD Curve matching", 150, 450, p.xg, UpdateShape)
AddSlider("Yg", "FD Curve matching", 150, 450, p.yg, UpdateShape)
code = 0
img = np.zeros((300,512,3), np.uint8)
print ("******************** PRESS g TO MATCH CURVES *************\n")
while (code!=27):
code = cv.waitKey(60)
if p.update:
p.levelNoise=cv.getTrackbarPos('Noise','FD Curve matching')
p.angle=cv.getTrackbarPos('Angle','FD Curve matching')
p.scale10=cv.getTrackbarPos('Scale','FD Curve matching')
p.origin=cv.getTrackbarPos('Origin','FD Curve matching')
p.xg=cv.getTrackbarPos('Xg','FD Curve matching')
p.yg=cv.getTrackbarPos('Yg','FD Curve matching')
r = cv.getRotationMatrix2D((p.xg, p.yg), angle=p.angle, scale=10.0/ p.scale10);
ctrNoisy= NoisyPolygon(ctrRef,p.levelNoise)
ctrNoisy1 = np.reshape(ctrNoisy,(ctrNoisy.shape[0],1,2))
ctrNoisyRotate = cv.transform(ctrNoisy1,r)
ctrNoisyRotateShift = np.empty([ctrNoisyRotate.shape[0],1,2],dtype=np.int32)
for i in range(0,ctrNoisy.shape[0]):
k=(i+(p.origin*ctrNoisy.shape[0])//100)% ctrNoisyRotate.shape[0]
ctrNoisyRotateShift[i] = ctrNoisyRotate[k]
# To draw contour using drawcontours
cc= np.reshape(ctrNoisyRotateShift,[ctrNoisyRotateShift.shape[0],2])
c = [ ctrRef,cc]
p.update = False;
rglobal =(0,0,0,0)
for i in range(0,2):
r = cv.boundingRect(c[i])
rglobal = union(rglobal,r)
r = list(rglobal)
r[2] = r[2]+10
r[3] = r[3]+10
rglobal = tuple(r)
img = np.zeros((2 * rglobal[3], 2 * rglobal[2], 3), np.uint8)
cv.drawContours(img, c, 0, (255,0,0),1);
cv.drawContours(img, c, 1, (0, 255, 0),1);
cv.circle(img, tuple(c[0][0]), 5, (255, 0, 0),3);
cv.circle(img, tuple(c[1][0]), 5, (0, 255, 0),3);
cv.imshow("FD Curve matching", img);
if code == ord('d') :
cv.destroyWindow("FD Curve matching");
cv.namedWindow("FD Curve matching");
# A rotation with center at (150,150) of angle 45 degrees and a scaling of 5/10
AddSlider("Noise", "FD Curve matching", 0, 20, p.levelNoise, UpdateShape)
AddSlider("Angle", "FD Curve matching", 0, 359, p.angle, UpdateShape)
AddSlider("Scale", "FD Curve matching", 5, 100, p.scale10, UpdateShape)
AddSlider("Origin%%", "FD Curve matching", 0, 100, p.origin, UpdateShape)
AddSlider("Xg", "FD Curve matching", 150, 450, p.xg, UpdateShape)
AddSlider("Yg", "FD Curve matching", 150, 450, p.yg, UpdateShape)
if code == ord('g'):
fit = cv.ximgproc.createContourFitting(1024,16);
# sampling contour we want 256 points
cn= np.reshape(ctrRef,[ctrRef.shape[0],1,2])
ctrRef2d = cv.ximgproc.contourSampling(cn, 256)
ctrRot2d = cv.ximgproc.contourSampling(ctrNoisyRotateShift, 256)
fit.setFDSize(16)
c1 = ctrRef2d
c2 = ctrRot2d
alphaPhiST, dist = fit.estimateTransformation(ctrRot2d, ctrRef2d)
print( "Transform *********\n Origin = ", 1-alphaPhiST[0,0] ," expected ", p.origin / 100. ,"\n")
print( "Angle = ", alphaPhiST[0,1] * 180 / math.pi ," expected " , p.angle,"\n")
print( "Scale = " ,alphaPhiST[0,2] ," expected " , p.scale10 / 10.0 , "\n")
dst = cv.ximgproc.transformFD(ctrRot2d, alphaPhiST,cn, False);
ctmp= np.reshape(dst,[dst.shape[0],2])
cdst=ctmp.astype(int)
c = [ ctrRef,cc,cdst]
cv.drawContours(img, c, 2, (0,0,255),1);
cv.circle(img, (int(c[2][0][0]),int(c[2][0][1])), 5, (0, 0, 255),5);
cv.imshow("FD Curve matching", img);