1
0
mirror of https://github.com/opencv/opencv_contrib.git synced 2025-10-16 22:35:51 +08:00
Files
opencv_contrib/modules/dnn_objdetect/doc/dnn_objdetect.bib
Kv Manohar 41a5a5eaf5 Merge pull request #1253 from kvmanohar22:GSoC17_dnn_objdetect
GSoC'17 Learning compact models for object detection (#1253)

* Final solver and model for SqueezeNet model

* update README

* update dependencies and CMakeLists

* add global pooling

* Add training scripts

* fix typo

* fix dependency of caffe

* fix whitespace

* Add squeezedet architecture

* Pascal pre process script

* Adding pre process scripts

* Generate the graph of the model

* more readable

* fix some bugs in the graph

* Post process class implementation

* Complete minimal post processing and standalone running

* Complete the base class

* remove c++11 features and fix bugs

* Complete example

* fix bugs

* Adding final scripts

* Classification scripts

* Update README.md

* Add example code and results

* Update README.md

* Re-order and fix some bugs

* fix build failure

* Document classes and functions

* Add instructions on how to use samples

* update instructionos

* fix docs failure

* fix conversion types

* fix type conversion warning

* Change examples to sample directoryu

* restructure directories

* add more references

* fix whitespace

* retain aspect ratio

* Add more examples

* fix docs warnings

* update with links to trained weights

* threshold update

* png -> jpg

* fix tutorial

* model files

* precomp.hpp , fix readme links, module dependencies

* copyrights

- no copyright in samples
- use new style OpenCV copyright header
- precomp.hpp
2018-01-29 12:08:32 +03:00

31 lines
1.2 KiB
BibTeX

@article{SqueezeNet,
Author = {Forrest N. Iandola and Song Han and Matthew W. Moskewicz and Khalid Ashraf and William J. Dally and Kurt Keutzer},
Title = {SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and $<$0.5MB model size},
Journal = {arXiv:1602.07360},
Year = {2016}
}
@inproceedings{squeezedet,
Author = {Bichen Wu and Forrest Iandola and Peter H. Jin and Kurt Keutzer},
Title = {SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving},
Journal = {arXiv:1612.01051},
Year = {2016}
}
@inproceedings{imagenet_cvpr09,
AUTHOR = {Deng, J. and Dong, W. and Socher, R. and Li, L.-J. and Li, K. and Fei-Fei, L.},
TITLE = {{ImageNet: A Large-Scale Hierarchical Image Database}},
BOOKTITLE = {CVPR09},
YEAR = {2009},
BIBSOURCE = "http://www.image-net.org/papers/imagenet_cvpr09.bib"}
@Article{Everingham10,
author = "Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A.",
title = "The Pascal Visual Object Classes (VOC) Challenge",
journal = "International Journal of Computer Vision",
volume = "88",
year = "2010",
number = "2",
month = jun,
pages = "303--338",
}