mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-23 09:38:56 +08:00
240 lines
6.9 KiB
C++
240 lines
6.9 KiB
C++
/*
|
|
Sample of using OpenCV dnn module with Torch ENet model.
|
|
*/
|
|
|
|
#include <opencv2/dnn.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
using namespace cv;
|
|
using namespace cv::dnn;
|
|
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <cstdlib>
|
|
#include <sstream>
|
|
using namespace std;
|
|
|
|
const String keys =
|
|
"{help h || Sample app for loading ENet Torch model. "
|
|
"The model and class names list can be downloaded here: "
|
|
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa }"
|
|
"{model m || path to Torch .net model file (model_best.net) }"
|
|
"{image i || path to image file }"
|
|
"{c_names c || path to file with classnames for channels (optional, categories.txt) }"
|
|
"{result r || path to save output blob (optional, binary format, NCHW order) }"
|
|
"{show s || whether to show all output channels or not}"
|
|
"{o_blob || output blob's name. If empty, last blob's name in net is used}"
|
|
;
|
|
|
|
std::vector<String> readClassNames(const char *filename);
|
|
static void colorizeSegmentation(Blob &score, Mat &segm,
|
|
Mat &legend, vector<String> &classNames);
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
cv::CommandLineParser parser(argc, argv, keys);
|
|
|
|
if (parser.has("help"))
|
|
{
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
|
|
String modelFile = parser.get<String>("model");
|
|
String imageFile = parser.get<String>("image");
|
|
|
|
if (!parser.check())
|
|
{
|
|
parser.printErrors();
|
|
return 0;
|
|
}
|
|
|
|
String classNamesFile = parser.get<String>("c_names");
|
|
String resultFile = parser.get<String>("result");
|
|
|
|
//! [Create the importer of TensorFlow model]
|
|
Ptr<dnn::Importer> importer;
|
|
try //Try to import TensorFlow AlexNet model
|
|
{
|
|
importer = dnn::createTorchImporter(modelFile);
|
|
}
|
|
catch (const cv::Exception &err) //Importer can throw errors, we will catch them
|
|
{
|
|
std::cerr << err.msg << std::endl;
|
|
}
|
|
//! [Create the importer of Caffe model]
|
|
|
|
if (!importer)
|
|
{
|
|
std::cerr << "Can't load network by using the mode file: " << std::endl;
|
|
std::cerr << modelFile << std::endl;
|
|
exit(-1);
|
|
}
|
|
|
|
//! [Initialize network]
|
|
dnn::Net net;
|
|
importer->populateNet(net);
|
|
importer.release(); //We don't need importer anymore
|
|
//! [Initialize network]
|
|
|
|
//! [Prepare blob]
|
|
Mat img = imread(imageFile), input;
|
|
if (img.empty())
|
|
{
|
|
std::cerr << "Can't read image from the file: " << imageFile << std::endl;
|
|
exit(-1);
|
|
}
|
|
|
|
cv::Size inputImgSize = cv::Size(512, 512);
|
|
|
|
if (inputImgSize != img.size())
|
|
resize(img, img, inputImgSize); //Resize image to input size
|
|
|
|
if(img.channels() == 3)
|
|
cv::cvtColor(img, input, cv::COLOR_BGR2RGB);
|
|
|
|
input.convertTo(input, CV_32F, 1/255.0);
|
|
|
|
dnn::Blob inputBlob = dnn::Blob::fromImages(input); //Convert Mat to dnn::Blob image batch
|
|
//! [Prepare blob]
|
|
|
|
//! [Set input blob]
|
|
net.setBlob("", inputBlob); //set the network input
|
|
//! [Set input blob]
|
|
|
|
cv::TickMeter tm;
|
|
tm.start();
|
|
|
|
//! [Make forward pass]
|
|
net.forward(); //compute output
|
|
//! [Make forward pass]
|
|
|
|
tm.stop();
|
|
|
|
//! [Gather output]
|
|
|
|
String oBlob = net.getLayerNames().back();
|
|
if (!parser.get<String>("o_blob").empty())
|
|
{
|
|
oBlob = parser.get<String>("o_blob");
|
|
}
|
|
|
|
dnn::Blob prob = net.getBlob(oBlob); //gather output of "prob" layer
|
|
|
|
Mat& result = prob.matRef();
|
|
|
|
BlobShape shape = prob.shape();
|
|
|
|
if (!resultFile.empty()) {
|
|
CV_Assert(result.isContinuous());
|
|
|
|
ofstream fout(resultFile.c_str(), ios::out | ios::binary);
|
|
fout.write((char*)result.data, result.total() * sizeof(float));
|
|
fout.close();
|
|
}
|
|
|
|
std::cout << "Output blob shape " << shape << std::endl;
|
|
std::cout << "Inference time, ms: " << tm.getTimeMilli() << std::endl;
|
|
|
|
if (parser.has("show"))
|
|
{
|
|
std::vector<String> classNames;
|
|
if(!classNamesFile.empty()) {
|
|
classNames = readClassNames(classNamesFile.c_str());
|
|
if (classNames.size() > prob.channels())
|
|
classNames = std::vector<String>(classNames.begin() + classNames.size() - prob.channels(),
|
|
classNames.end());
|
|
}
|
|
Mat segm, legend;
|
|
colorizeSegmentation(prob, segm, legend, classNames);
|
|
|
|
Mat show;
|
|
addWeighted(img, 0.2, segm, 0.8, 0.0, show);
|
|
|
|
imshow("Result", show);
|
|
if(classNames.size())
|
|
imshow("Legend", legend);
|
|
waitKey();
|
|
}
|
|
|
|
return 0;
|
|
} //main
|
|
|
|
|
|
std::vector<String> readClassNames(const char *filename)
|
|
{
|
|
std::vector<String> classNames;
|
|
|
|
std::ifstream fp(filename);
|
|
if (!fp.is_open())
|
|
{
|
|
std::cerr << "File with classes labels not found: " << filename << std::endl;
|
|
exit(-1);
|
|
}
|
|
|
|
std::string name;
|
|
while (!fp.eof())
|
|
{
|
|
std::getline(fp, name);
|
|
if (name.length())
|
|
classNames.push_back(name);
|
|
}
|
|
|
|
fp.close();
|
|
return classNames;
|
|
}
|
|
|
|
static void colorizeSegmentation(Blob &score, Mat &segm, Mat &legend, vector<String> &classNames)
|
|
{
|
|
const int rows = score.rows();
|
|
const int cols = score.cols();
|
|
const int chns = score.channels();
|
|
|
|
vector<Vec3i> colors;
|
|
RNG rng(12345678);
|
|
|
|
cv::Mat maxCl(rows, cols, CV_8UC1);
|
|
cv::Mat maxVal(rows, cols, CV_32FC1);
|
|
for (int ch = 0; ch < chns; ch++)
|
|
{
|
|
colors.push_back(Vec3i(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256)));
|
|
for (int row = 0; row < rows; row++)
|
|
{
|
|
const float *ptrScore = score.ptrf(0, ch, row);
|
|
uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
|
|
float *ptrMaxVal = maxVal.ptr<float>(row);
|
|
for (int col = 0; col < cols; col++)
|
|
{
|
|
if (ptrScore[col] > ptrMaxVal[col])
|
|
{
|
|
ptrMaxVal[col] = ptrScore[col];
|
|
ptrMaxCl[col] = ch;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
segm.create(rows, cols, CV_8UC3);
|
|
for (int row = 0; row < rows; row++)
|
|
{
|
|
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
|
|
cv::Vec3b *ptrSegm = segm.ptr<cv::Vec3b>(row);
|
|
for (int col = 0; col < cols; col++)
|
|
{
|
|
ptrSegm[col] = colors[ptrMaxCl[col]];
|
|
}
|
|
}
|
|
|
|
if (classNames.size() == colors.size())
|
|
{
|
|
int blockHeight = 30;
|
|
legend.create(blockHeight*classNames.size(), 200, CV_8UC3);
|
|
for(int i = 0; i < classNames.size(); i++)
|
|
{
|
|
cv::Mat block = legend.rowRange(i*blockHeight, (i+1)*blockHeight);
|
|
block = colors[i];
|
|
putText(block, classNames[i], Point(0, blockHeight/2), FONT_HERSHEY_SIMPLEX, 0.5, Scalar());
|
|
}
|
|
}
|
|
}
|