1
0
mirror of https://github.com/opencv/opencv_contrib.git synced 2025-10-23 09:38:56 +08:00
Files
opencv_contrib/modules/dnn/test/test_torch_importer.cpp
2017-02-15 12:07:43 +03:00

190 lines
5.3 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if defined(ENABLE_TORCH_IMPORTER) && ENABLE_TORCH_IMPORTER
#if defined(ENABLE_TORCH_TESTS) && ENABLE_TORCH_TESTS
#include "test_precomp.hpp"
#include "npy_blob.hpp"
namespace cvtest
{
using namespace std;
using namespace testing;
using namespace cv;
using namespace cv::dnn;
template<typename TStr>
static std::string _tf(TStr filename, bool inTorchDir = true)
{
String path = getOpenCVExtraDir() + "/dnn/";
if (inTorchDir)
path += "torch/";
path += filename;
return path;
}
TEST(Torch_Importer, simple_read)
{
Net net;
Ptr<Importer> importer;
ASSERT_NO_THROW( importer = createTorchImporter(_tf("net_simple_net.txt"), false) );
ASSERT_TRUE( importer != NULL );
importer->populateNet(net);
}
static void runTorchNet(String prefix, String outLayerName = "",
bool check2ndBlob = false, bool isBinary = false)
{
String suffix = (isBinary) ? ".dat" : ".txt";
Net net;
Ptr<Importer> importer = createTorchImporter(_tf(prefix + "_net" + suffix), isBinary);
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
Blob inp, outRef;
ASSERT_NO_THROW( inp = readTorchBlob(_tf(prefix + "_input" + suffix), isBinary) );
ASSERT_NO_THROW( outRef = readTorchBlob(_tf(prefix + "_output" + suffix), isBinary) );
net.setBlob(".0", inp);
net.forward();
if (outLayerName.empty())
outLayerName = net.getLayerNames().back();
Blob out = net.getBlob(outLayerName);
normAssert(outRef, out);
if (check2ndBlob)
{
Blob out2 = net.getBlob(outLayerName + ".1");
Blob ref2 = readTorchBlob(_tf(prefix + "_output_2" + suffix), isBinary);
normAssert(out2, ref2);
}
}
TEST(Torch_Importer, run_convolution)
{
runTorchNet("net_conv");
}
TEST(Torch_Importer, run_pool_max)
{
runTorchNet("net_pool_max", "", true);
}
TEST(Torch_Importer, run_pool_ave)
{
runTorchNet("net_pool_ave");
}
TEST(Torch_Importer, run_reshape)
{
runTorchNet("net_reshape");
runTorchNet("net_reshape_batch");
}
TEST(Torch_Importer, run_linear)
{
runTorchNet("net_linear_2d");
}
TEST(Torch_Importer, run_paralel)
{
runTorchNet("net_parallel", "l2_torchMerge");
}
TEST(Torch_Importer, run_concat)
{
runTorchNet("net_concat", "l2_torchMerge");
}
TEST(Torch_Importer, run_deconv)
{
runTorchNet("net_deconv");
}
TEST(Torch_Importer, run_batch_norm)
{
runTorchNet("net_batch_norm");
}
TEST(Torch_Importer, net_prelu)
{
runTorchNet("net_prelu");
}
TEST(Torch_Importer, net_cadd_table)
{
runTorchNet("net_cadd_table");
}
#if defined(ENABLE_TORCH_ENET_TESTS)
TEST(Torch_Importer, ENet_accuracy)
{
Net net;
{
Ptr<Importer> importer = createTorchImporter(_tf("Enet-model-best.net", false));
ASSERT_TRUE(importer != NULL);
importer->populateNet(net);
}
Mat sample = imread(_tf("street.png", false));
cv::cvtColor(sample, sample, cv::COLOR_BGR2RGB);
sample.convertTo(sample, CV_32F, 1/255.0);
dnn::Blob inputBlob = dnn::Blob::fromImages(sample);
net.setBlob("", inputBlob);
net.forward();
dnn::Blob out = net.getBlob(net.getLayerNames().back());
Blob ref = blobFromNPY(_tf("torch_enet_prob.npy", false));
normAssert(ref, out);
}
#endif
}
#endif
#endif