mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-18 17:24:28 +08:00

Adding FastCV extension for normalizeLocalBox u8 and f32 #3916 Fastcv extension for normalizeLocalBox u8 and f32 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [ ] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
150 lines
4.1 KiB
C++
150 lines
4.1 KiB
C++
/*
|
|
* Copyright (c) 2024-2025 Qualcomm Innovation Center, Inc. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
typedef testing::TestWithParam<tuple<Size, int, int, bool>> GaussianBlurTest;
|
|
|
|
TEST_P(GaussianBlurTest, accuracy)
|
|
{
|
|
cv::Size srcSize = get<0>(GetParam());
|
|
int depth = get<1>(GetParam());
|
|
int ksize = get<2>(GetParam());
|
|
bool border = get<3>(GetParam());
|
|
|
|
// For some cases FastCV not support, so skip them
|
|
if((ksize!=5) && (depth!=CV_8U))
|
|
return;
|
|
|
|
cv::Mat src(srcSize, depth);
|
|
cv::Mat dst,ref;
|
|
RNG& rng = cv::theRNG();
|
|
cvtest::randUni(rng, src, Scalar::all(0), Scalar::all(255));
|
|
|
|
cv::fastcv::gaussianBlur(src, dst, ksize, border);
|
|
|
|
if(depth == CV_32S)
|
|
src.convertTo(src, CV_32F);
|
|
cv::GaussianBlur(src,ref,Size(ksize,ksize),0,0,border);
|
|
ref.convertTo(ref,depth);
|
|
|
|
cv::Mat difference;
|
|
cv::absdiff(dst, ref, difference);
|
|
|
|
int num_diff_pixels = cv::countNonZero(difference);
|
|
|
|
EXPECT_LT(num_diff_pixels, (src.rows+src.cols)*ksize);
|
|
}
|
|
|
|
typedef testing::TestWithParam<tuple<Size, int, int>> Filter2DTest;
|
|
|
|
TEST_P(Filter2DTest, accuracy)
|
|
{
|
|
Size srcSize = get<0>(GetParam());
|
|
int ddepth = get<1>(GetParam());
|
|
int ksize = get<2>(GetParam());
|
|
|
|
cv::Mat src(srcSize, CV_8U);
|
|
cv::Mat kernel;
|
|
cv::Mat dst, ref;
|
|
|
|
switch (ddepth)
|
|
{
|
|
case CV_8U:
|
|
case CV_16S:
|
|
{
|
|
kernel.create(ksize,ksize,CV_8S);
|
|
break;
|
|
}
|
|
case CV_32F:
|
|
{
|
|
kernel.create(ksize,ksize,CV_32F);
|
|
break;
|
|
}
|
|
default:
|
|
return;
|
|
}
|
|
|
|
RNG& rng = cv::theRNG();
|
|
cvtest::randUni(rng, src, Scalar::all(0), Scalar::all(255));
|
|
cvtest::randUni(rng, kernel, Scalar::all(INT8_MIN), Scalar::all(INT8_MAX));
|
|
|
|
cv::fastcv::filter2D(src, dst, ddepth, kernel);
|
|
cv::filter2D(src, ref, ddepth, kernel);
|
|
|
|
cv::Mat difference;
|
|
dst.convertTo(dst, CV_8U);
|
|
ref.convertTo(ref, CV_8U);
|
|
cv::absdiff(dst, ref, difference);
|
|
|
|
int num_diff_pixels = cv::countNonZero(difference);
|
|
EXPECT_LT(num_diff_pixels, (src.rows+src.cols)*ksize);
|
|
}
|
|
|
|
typedef testing::TestWithParam<tuple<Size, int>> SepFilter2DTest;
|
|
|
|
TEST_P(SepFilter2DTest, accuracy)
|
|
{
|
|
Size srcSize = get<0>(GetParam());
|
|
int ksize = get<1>(GetParam());
|
|
|
|
cv::Mat src(srcSize, CV_8U);
|
|
cv::Mat kernel(1,ksize,CV_8S);
|
|
cv::Mat dst,ref;
|
|
RNG& rng = cv::theRNG();
|
|
cvtest::randUni(rng, src, Scalar::all(0), Scalar::all(255));
|
|
cvtest::randUni(rng, kernel, Scalar::all(INT8_MIN), Scalar::all(INT8_MAX));
|
|
|
|
cv::fastcv::sepFilter2D(src, dst, CV_8U, kernel, kernel);
|
|
cv::sepFilter2D(src,ref,CV_8U,kernel,kernel);
|
|
|
|
cv::Mat difference;
|
|
cv::absdiff(dst, ref, difference);
|
|
int num_diff_pixels = cv::countNonZero(difference);
|
|
EXPECT_LT(num_diff_pixels, (src.rows+src.cols)*ksize);
|
|
}
|
|
|
|
typedef testing::TestWithParam<tuple<int>> NormalizeLocalBoxTest;
|
|
|
|
TEST_P(NormalizeLocalBoxTest, accuracy)
|
|
{
|
|
bool use_stddev = get<0>(GetParam());
|
|
cv::Mat src, dst;
|
|
src = imread(cvtest::findDataFile("cv/shared/baboon.png"), cv::IMREAD_GRAYSCALE);
|
|
|
|
cv::fastcv::normalizeLocalBox(src, dst, Size(5,5), use_stddev);
|
|
Scalar s = cv::mean(dst);
|
|
|
|
if(use_stddev)
|
|
EXPECT_LT(s[0],1);
|
|
else
|
|
EXPECT_LT(s[0],50);
|
|
}
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(FastCV_Extension, GaussianBlurTest, Combine(
|
|
/*image size*/ ::testing::Values(perf::szVGA, perf::sz720p, perf::sz1080p),
|
|
/*image depth*/ ::testing::Values(CV_8U,CV_16S,CV_32S),
|
|
/*kernel size*/ ::testing::Values(3, 5),
|
|
/*blur border*/ ::testing::Values(true,false)
|
|
));
|
|
|
|
INSTANTIATE_TEST_CASE_P(FastCV_Extension, Filter2DTest, Combine(
|
|
/*image sie*/ Values(perf::szVGA, perf::sz720p, perf::sz1080p),
|
|
/*dst depth*/ Values(CV_8U,CV_16S,CV_32F),
|
|
/*kernel size*/ Values(3, 5, 7, 9, 11)
|
|
));
|
|
|
|
INSTANTIATE_TEST_CASE_P(FastCV_Extension, SepFilter2DTest, Combine(
|
|
/*image size*/ Values(perf::szVGA, perf::sz720p, perf::sz1080p),
|
|
/*kernel size*/ Values(3, 5, 7, 9, 11)
|
|
));
|
|
|
|
INSTANTIATE_TEST_CASE_P(FastCV_Extension, NormalizeLocalBoxTest, Values(0,1));
|
|
|
|
|
|
}} // namespaces opencv_test, ::
|