mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-19 11:21:39 +08:00
556 lines
14 KiB
C++
556 lines
14 KiB
C++
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2014, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
// Author: Tolga Birdal <tbirdal AT gmail.com>
|
|
|
|
#include "precomp.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
namespace ppf_match_3d
|
|
{
|
|
static void subtractColumns(Mat srcPC, double mean[3])
|
|
{
|
|
int height = srcPC.rows;
|
|
|
|
for (int i=0; i<height; i++)
|
|
{
|
|
float *row = srcPC.ptr<float>(i);
|
|
{
|
|
row[0]-=(float)mean[0];
|
|
row[1]-=(float)mean[1];
|
|
row[2]-=(float)mean[2];
|
|
}
|
|
}
|
|
}
|
|
|
|
// as in PCA
|
|
static void computeMeanCols(Mat srcPC, double mean[3])
|
|
{
|
|
int height = srcPC.rows;
|
|
|
|
double mean1=0, mean2 = 0, mean3 = 0;
|
|
|
|
for (int i=0; i<height; i++)
|
|
{
|
|
const float *row = srcPC.ptr<float>(i);
|
|
{
|
|
mean1 += (double)row[0];
|
|
mean2 += (double)row[1];
|
|
mean3 += (double)row[2];
|
|
}
|
|
}
|
|
|
|
mean1/=(double)height;
|
|
mean2/=(double)height;
|
|
mean3/=(double)height;
|
|
|
|
mean[0] = mean1;
|
|
mean[1] = mean2;
|
|
mean[2] = mean3;
|
|
}
|
|
|
|
// as in PCA
|
|
/*static void subtractMeanFromColumns(Mat srcPC, double mean[3])
|
|
{
|
|
computeMeanCols(srcPC, mean);
|
|
subtractColumns(srcPC, mean);
|
|
}*/
|
|
|
|
// compute the average distance to the origin
|
|
static double computeDistToOrigin(Mat srcPC)
|
|
{
|
|
int height = srcPC.rows;
|
|
double dist = 0;
|
|
|
|
for (int i=0; i<height; i++)
|
|
{
|
|
const float *row = srcPC.ptr<float>(i);
|
|
dist += sqrt(row[0]*row[0]+row[1]*row[1]+row[2]*row[2]);
|
|
}
|
|
|
|
return dist;
|
|
}
|
|
|
|
// From numerical receipes: Finds the median of an array
|
|
static float medianF(float arr[], int n)
|
|
{
|
|
int low, high ;
|
|
int median;
|
|
int middle, ll, hh;
|
|
|
|
low = 0 ;
|
|
high = n-1 ;
|
|
median = (low + high) >>1;
|
|
for (;;)
|
|
{
|
|
if (high <= low) /* One element only */
|
|
return arr[median] ;
|
|
|
|
if (high == low + 1)
|
|
{
|
|
/* Two elements only */
|
|
if (arr[low] > arr[high])
|
|
std::swap(arr[low], arr[high]) ;
|
|
return arr[median] ;
|
|
}
|
|
|
|
/* Find median of low, middle and high items; swap into position low */
|
|
middle = (low + high) >>1;
|
|
if (arr[middle] > arr[high])
|
|
std::swap(arr[middle], arr[high]) ;
|
|
if (arr[low] > arr[high])
|
|
std::swap(arr[low], arr[high]) ;
|
|
if (arr[middle] > arr[low])
|
|
std::swap(arr[middle], arr[low]) ;
|
|
|
|
/* Swap low item (now in position middle) into position (low+1) */
|
|
std::swap(arr[middle], arr[low+1]) ;
|
|
|
|
/* Nibble from each end towards middle, swapping items when stuck */
|
|
ll = low + 1;
|
|
hh = high;
|
|
for (;;)
|
|
{
|
|
do
|
|
ll++;
|
|
while (arr[low] > arr[ll]) ;
|
|
do
|
|
hh--;
|
|
while (arr[hh] > arr[low]) ;
|
|
|
|
if (hh < ll)
|
|
break;
|
|
|
|
std::swap(arr[ll], arr[hh]) ;
|
|
}
|
|
|
|
/* Swap middle item (in position low) back into correct position */
|
|
std::swap(arr[low], arr[hh]) ;
|
|
|
|
/* Re-set active partition */
|
|
if (hh <= median)
|
|
low = ll;
|
|
if (hh >= median)
|
|
high = hh - 1;
|
|
}
|
|
}
|
|
|
|
static float getRejectionThreshold(float* r, int m, float outlierScale)
|
|
{
|
|
float* t=(float*)calloc(m, sizeof(float));
|
|
int i=0;
|
|
float s=0, medR, threshold;
|
|
|
|
memcpy(t, r, m*sizeof(float));
|
|
medR=medianF(t, m);
|
|
|
|
for (i=0; i<m; i++)
|
|
t[i] = (float)fabs((double)r[i]-(double)medR);
|
|
|
|
s = 1.48257968f * medianF(t, m);
|
|
|
|
threshold = (outlierScale*s+medR);
|
|
|
|
free(t);
|
|
return threshold;
|
|
}
|
|
|
|
// Kok Lim Low's linearization
|
|
static void minimizePointToPlaneMetric(Mat Src, Mat Dst, Mat& X)
|
|
{
|
|
//Mat sub = Dst - Src;
|
|
Mat A = Mat(Src.rows, 6, CV_64F);
|
|
Mat b = Mat(Src.rows, 1, CV_64F);
|
|
|
|
#if defined _OPENMP
|
|
#pragma omp parallel for
|
|
#endif
|
|
for (int i=0; i<Src.rows; i++)
|
|
{
|
|
const double *srcPt = Src.ptr<double>(i);
|
|
const double *dstPt = Dst.ptr<double>(i);
|
|
const double *normals = &dstPt[3];
|
|
double *bVal = b.ptr<double>(i);
|
|
double *aRow = A.ptr<double>(i);
|
|
|
|
const double sub[3]={dstPt[0]-srcPt[0], dstPt[1]-srcPt[1], dstPt[2]-srcPt[2]};
|
|
|
|
*bVal = TDot3(sub, normals);
|
|
TCross(srcPt, normals, aRow);
|
|
|
|
aRow[3] = normals[0];
|
|
aRow[4] = normals[1];
|
|
aRow[5] = normals[2];
|
|
}
|
|
|
|
cv::solve(A, b, X, DECOMP_SVD);
|
|
}
|
|
|
|
|
|
static void getTransformMat(Mat X, double Pose[16])
|
|
{
|
|
Mat DCM;
|
|
double *r1, *r2, *r3;
|
|
double* x = (double*)X.data;
|
|
|
|
const double sx = sin(x[0]);
|
|
const double cx = cos(x[0]);
|
|
const double sy = sin(x[1]);
|
|
const double cy = cos(x[1]);
|
|
const double sz = sin(x[2]);
|
|
const double cz = cos(x[2]);
|
|
|
|
Mat R1 = Mat::eye(3,3, CV_64F);
|
|
Mat R2 = Mat::eye(3,3, CV_64F);
|
|
Mat R3 = Mat::eye(3,3, CV_64F);
|
|
|
|
r1= (double*)R1.data;
|
|
r2= (double*)R2.data;
|
|
r3= (double*)R3.data;
|
|
|
|
r1[4]= cx;
|
|
r1[5]= -sx;
|
|
r1[7]= sx;
|
|
r1[8]= cx;
|
|
|
|
r2[0]= cy;
|
|
r2[2]= sy;
|
|
r2[6]= -sy;
|
|
r2[8]= cy;
|
|
|
|
r3[0]= cz;
|
|
r3[1]= -sz;
|
|
r3[3]= sz;
|
|
r3[4]= cz;
|
|
|
|
DCM = R1*(R2*R3);
|
|
|
|
Pose[0] = DCM.at<double>(0,0);
|
|
Pose[1] = DCM.at<double>(0,1);
|
|
Pose[2] = DCM.at<double>(0,2);
|
|
Pose[4] = DCM.at<double>(1,0);
|
|
Pose[5] = DCM.at<double>(1,1);
|
|
Pose[6] = DCM.at<double>(1,2);
|
|
Pose[8] = DCM.at<double>(2,0);
|
|
Pose[9] = DCM.at<double>(2,1);
|
|
Pose[10] = DCM.at<double>(2,2);
|
|
Pose[3]=x[3];
|
|
Pose[7]=x[4];
|
|
Pose[11]=x[5];
|
|
Pose[15]=1;
|
|
}
|
|
|
|
/* Fast way to look up the duplicates
|
|
duplicates is pre-allocated
|
|
make sure that the max element in array will not exceed maxElement
|
|
*/
|
|
static hashtable_int* getHashtable(int* data, size_t length, int numMaxElement)
|
|
{
|
|
hashtable_int* hashtable = hashtableCreate(static_cast<size_t>(numMaxElement*2), 0);
|
|
for (size_t i = 0; i < length; i++)
|
|
{
|
|
const KeyType key = (KeyType)data[i];
|
|
hashtableInsertHashed(hashtable, key+1, reinterpret_cast<void*>(i+1));
|
|
}
|
|
|
|
return hashtable;
|
|
}
|
|
|
|
// source point clouds are assumed to contain their normals
|
|
int ICP::registerModelToScene(const Mat& srcPC, const Mat& dstPC, double& residual, Matx44d& pose)
|
|
{
|
|
int n = srcPC.rows;
|
|
|
|
const bool useRobustReject = m_rejectionScale>0;
|
|
|
|
Mat srcTemp = srcPC.clone();
|
|
Mat dstTemp = dstPC.clone();
|
|
double meanSrc[3], meanDst[3];
|
|
computeMeanCols(srcTemp, meanSrc);
|
|
computeMeanCols(dstTemp, meanDst);
|
|
double meanAvg[3]={0.5*(meanSrc[0]+meanDst[0]), 0.5*(meanSrc[1]+meanDst[1]), 0.5*(meanSrc[2]+meanDst[2])};
|
|
subtractColumns(srcTemp, meanAvg);
|
|
subtractColumns(dstTemp, meanAvg);
|
|
|
|
double distSrc = computeDistToOrigin(srcTemp);
|
|
double distDst = computeDistToOrigin(dstTemp);
|
|
|
|
double scale = (double)n / ((distSrc + distDst)*0.5);
|
|
|
|
srcTemp(cv::Range(0, srcTemp.rows), cv::Range(0,3)) *= scale;
|
|
dstTemp(cv::Range(0, dstTemp.rows), cv::Range(0,3)) *= scale;
|
|
|
|
Mat srcPC0 = srcTemp;
|
|
Mat dstPC0 = dstTemp;
|
|
|
|
// initialize pose
|
|
matrixIdentity(4, pose.val);
|
|
|
|
void* flann = indexPCFlann(dstPC0);
|
|
Mat M = Mat::eye(4,4,CV_64F);
|
|
|
|
double tempResidual = 0;
|
|
|
|
|
|
// walk the pyramid
|
|
for (int level = m_numLevels-1; level >=0; level--)
|
|
{
|
|
const double impact = 2;
|
|
double div = pow((double)impact, (double)level);
|
|
//double div2 = div*div;
|
|
const int numSamples = cvRound((double)(n/(div)));
|
|
const double TolP = m_tolerance*(double)(level+1)*(level+1);
|
|
const int MaxIterationsPyr = cvRound((double)m_maxIterations/(level+1));
|
|
|
|
// Obtain the sampled point clouds for this level: Also rotates the normals
|
|
Mat srcPCT = transformPCPose(srcPC0, pose.val);
|
|
|
|
const int sampleStep = cvRound((double)n/(double)numSamples);
|
|
std::vector<int> srcSampleInd;
|
|
|
|
/*
|
|
Note by Tolga Birdal
|
|
Downsample the model point clouds. If more optimization is required,
|
|
one could also downsample the scene points, but I think this might
|
|
decrease the accuracy. That's why I won't be implementing it at this
|
|
moment.
|
|
|
|
Also note that you have to compute a KD-tree for each level.
|
|
*/
|
|
srcPCT = samplePCUniformInd(srcPCT, sampleStep, srcSampleInd);
|
|
|
|
double fval_old=9999999999;
|
|
double fval_perc=0;
|
|
double fval_min=9999999999;
|
|
Mat Src_Moved = srcPCT.clone();
|
|
|
|
int i=0;
|
|
|
|
size_t numElSrc = (size_t)Src_Moved.rows;
|
|
int sizesResult[2] = {(int)numElSrc, 1};
|
|
float* distances = new float[numElSrc];
|
|
int* indices = new int[numElSrc];
|
|
|
|
Mat Indices(2, sizesResult, CV_32S, indices, 0);
|
|
Mat Distances(2, sizesResult, CV_32F, distances, 0);
|
|
|
|
// use robust weighting for outlier treatment
|
|
int* indicesModel = new int[numElSrc];
|
|
int* indicesScene = new int[numElSrc];
|
|
|
|
int* newI = new int[numElSrc];
|
|
int* newJ = new int[numElSrc];
|
|
|
|
double PoseX[16]={0};
|
|
matrixIdentity(4, PoseX);
|
|
|
|
while ( (!(fval_perc<(1+TolP) && fval_perc>(1-TolP))) && i<MaxIterationsPyr)
|
|
{
|
|
uint di=0, selInd = 0;
|
|
|
|
queryPCFlann(flann, Src_Moved, Indices, Distances);
|
|
|
|
for (di=0; di<numElSrc; di++)
|
|
{
|
|
newI[di] = di;
|
|
newJ[di] = indices[di];
|
|
}
|
|
|
|
if (useRobustReject)
|
|
{
|
|
int numInliers = 0;
|
|
float threshold = getRejectionThreshold(distances, Distances.rows, m_rejectionScale);
|
|
Mat acceptInd = Distances<threshold;
|
|
|
|
uchar *accPtr = (uchar*)acceptInd.data;
|
|
for (int l=0; l<acceptInd.rows; l++)
|
|
{
|
|
if (accPtr[l])
|
|
{
|
|
newI[numInliers] = l;
|
|
newJ[numInliers] = indices[l];
|
|
numInliers++;
|
|
}
|
|
}
|
|
numElSrc=numInliers;
|
|
}
|
|
|
|
// Step 2: Picky ICP
|
|
// Among the resulting corresponding pairs, if more than one scene point p_i
|
|
// is assigned to the same model point m_j, then select p_i that corresponds
|
|
// to the minimum distance
|
|
|
|
hashtable_int* duplicateTable = getHashtable(newJ, numElSrc, dstPC0.rows);
|
|
|
|
for (di=0; di<duplicateTable->size; di++)
|
|
{
|
|
hashnode_i *node = duplicateTable->nodes[di];
|
|
|
|
if (node)
|
|
{
|
|
// select the first node
|
|
size_t idx = reinterpret_cast<size_t>(node->data)-1, dn=0;
|
|
int dup = (int)node->key-1;
|
|
size_t minIdxD = idx;
|
|
float minDist = distances[idx];
|
|
|
|
while ( node )
|
|
{
|
|
idx = reinterpret_cast<size_t>(node->data)-1;
|
|
|
|
if (distances[idx] < minDist)
|
|
{
|
|
minDist = distances[idx];
|
|
minIdxD = idx;
|
|
}
|
|
|
|
node = node->next;
|
|
dn++;
|
|
}
|
|
|
|
indicesModel[ selInd ] = newI[ minIdxD ];
|
|
indicesScene[ selInd ] = dup ;
|
|
selInd++;
|
|
}
|
|
}
|
|
|
|
hashtableDestroy(duplicateTable);
|
|
|
|
if (selInd)
|
|
{
|
|
|
|
Mat Src_Match = Mat(selInd, srcPCT.cols, CV_64F);
|
|
Mat Dst_Match = Mat(selInd, srcPCT.cols, CV_64F);
|
|
|
|
for (di=0; di<selInd; di++)
|
|
{
|
|
const int indModel = indicesModel[di];
|
|
const int indScene = indicesScene[di];
|
|
const float *srcPt = srcPCT.ptr<float>(indModel);
|
|
const float *dstPt = dstPC0.ptr<float>(indScene);
|
|
double *srcMatchPt = Src_Match.ptr<double>(di);
|
|
double *dstMatchPt = Dst_Match.ptr<double>(di);
|
|
int ci=0;
|
|
|
|
for (ci=0; ci<srcPCT.cols; ci++)
|
|
{
|
|
srcMatchPt[ci] = (double)srcPt[ci];
|
|
dstMatchPt[ci] = (double)dstPt[ci];
|
|
}
|
|
}
|
|
|
|
Mat X;
|
|
minimizePointToPlaneMetric(Src_Match, Dst_Match, X);
|
|
|
|
getTransformMat(X, PoseX);
|
|
Src_Moved = transformPCPose(srcPCT, PoseX);
|
|
|
|
double fval = cv::norm(Src_Match, Dst_Match)/(double)(Src_Moved.rows);
|
|
|
|
// Calculate change in error between iterations
|
|
fval_perc=fval/fval_old;
|
|
|
|
// Store error value
|
|
fval_old=fval;
|
|
|
|
if (fval < fval_min)
|
|
fval_min = fval;
|
|
}
|
|
else
|
|
break;
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
double TempPose[16];
|
|
matrixProduct44(PoseX, pose.val, TempPose);
|
|
|
|
// no need to copy the last 4 rows
|
|
for (int c=0; c<12; c++)
|
|
pose.val[c] = TempPose[c];
|
|
|
|
residual = tempResidual;
|
|
|
|
delete[] newI;
|
|
delete[] newJ;
|
|
delete[] indicesModel;
|
|
delete[] indicesScene;
|
|
delete[] distances;
|
|
delete[] indices;
|
|
|
|
tempResidual = fval_min;
|
|
}
|
|
|
|
// Pose(1:3, 4) = Pose(1:3, 4)./scale;
|
|
pose.val[3] = pose.val[3]/scale + meanAvg[0];
|
|
pose.val[7] = pose.val[7]/scale + meanAvg[1];
|
|
pose.val[11] = pose.val[11]/scale + meanAvg[2];
|
|
|
|
// In MATLAB this would be : Pose(1:3, 4) = Pose(1:3, 4)./scale + meanAvg' - Pose(1:3, 1:3)*meanAvg';
|
|
double Rpose[9], Cpose[3];
|
|
poseToR(pose.val, Rpose);
|
|
matrixProduct331(Rpose, meanAvg, Cpose);
|
|
pose.val[3] -= Cpose[0];
|
|
pose.val[7] -= Cpose[1];
|
|
pose.val[11] -= Cpose[2];
|
|
|
|
residual = tempResidual;
|
|
|
|
destroyFlann(flann);
|
|
return 0;
|
|
}
|
|
|
|
// source point clouds are assumed to contain their normals
|
|
int ICP::registerModelToScene(const Mat& srcPC, const Mat& dstPC, std::vector<Pose3DPtr>& poses)
|
|
{
|
|
for (size_t i=0; i<poses.size(); i++)
|
|
{
|
|
Matx44d poseICP = Matx44d::eye();
|
|
Mat srcTemp = transformPCPose(srcPC, poses[i]->pose);
|
|
registerModelToScene(srcTemp, dstPC, poses[i]->residual, poseICP);
|
|
poses[i]->appendPose(poseICP.val);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
} // namespace ppf_match_3d
|
|
|
|
} // namespace cv
|