mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-23 00:49:38 +08:00
853 lines
33 KiB
C++
853 lines
33 KiB
C++
/*///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencv2/video/tracking.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
#include "time.h"
|
|
#include <algorithm>
|
|
#include <limits.h>
|
|
#include "tld_tracker.hpp"
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
#define THETA_NN 0.50
|
|
#define STANDARD_PATCH_SIZE 15
|
|
#define CORE_THRESHOLD 0.5
|
|
#define NEG_EXAMPLES_IN_INIT_MODEL 300
|
|
#define MAX_EXAMPLES_IN_MODEL 500
|
|
#define MEASURES_PER_CLASSIFIER 13
|
|
#define SCALE_STEP 1.2
|
|
#define DOWNSCALE_MODE INTER_LINEAR
|
|
#define BLUR_AS_VADIM
|
|
#undef CLOSED_LOOP
|
|
static const cv::Size GaussBlurKernelSize(3,3);
|
|
|
|
using namespace cv;
|
|
using namespace tld;
|
|
|
|
/*
|
|
* FIXME(optimize):
|
|
* no median
|
|
* direct formula in resamples
|
|
* FIXME(issues)
|
|
* THETA_NN 0.5<->0.6 dramatic change vs video 6 !!
|
|
* TODO(features)
|
|
* benchmark: two streams of photos --> better video
|
|
* (try inter_area for resize)
|
|
* TODO:
|
|
* fix pushbot ->pick commits -> compare_branches->all in 1->resubmit
|
|
* ||video(0.5<->0.6) --> debug if box size is less than 20
|
|
* perfect PN
|
|
*
|
|
* vadim:
|
|
* ?3. comment each function/method
|
|
* 5. empty lines to separate logical...
|
|
* 6. comment logical sections
|
|
* ?10. all in one class
|
|
* 11. group decls logically, order of statements
|
|
* 12. not v=vector(n), but assign(n,0)
|
|
* -->14. TLDEnsembleClassifier
|
|
* 16. loops limits
|
|
* 17. inner scope loops
|
|
* 18. classify in TLDEnsembleClassifier
|
|
* 19. var checker
|
|
* 20. NCC using plain loops
|
|
* 21. precompute offset
|
|
* 22. vec of structs (detect and beyond)
|
|
*
|
|
*/
|
|
|
|
/* design decisions:
|
|
* blur --> resize (vs. resize-->blur) in detect(), ensembleClassifier stage
|
|
* no random gauss noise, when making examples for ensembleClassifier
|
|
*/
|
|
|
|
namespace cv
|
|
{
|
|
|
|
class TLDDetector;
|
|
class MyMouseCallbackDEBUG{
|
|
public:
|
|
MyMouseCallbackDEBUG( Mat& img, Mat& imgBlurred,TLDDetector* detector):img_(img),imgBlurred_(imgBlurred),detector_(detector){}
|
|
static void onMouse( int event, int x, int y, int, void* obj){
|
|
((MyMouseCallbackDEBUG*)obj)->onMouse(event,x,y);
|
|
}
|
|
MyMouseCallbackDEBUG& operator= (const MyMouseCallbackDEBUG& /*other*/){return *this;}
|
|
private:
|
|
void onMouse( int event, int x, int y);
|
|
Mat& img_,imgBlurred_;
|
|
TLDDetector* detector_;
|
|
};
|
|
|
|
class Data {
|
|
public:
|
|
Data(Rect2d initBox);
|
|
Size getMinSize(){return minSize;}
|
|
double getScale(){return scale;}
|
|
bool confident;
|
|
bool failedLastTime;
|
|
int frameNum;
|
|
void printme(FILE* port=stdout);
|
|
private:
|
|
double scale;
|
|
Size minSize;
|
|
};
|
|
|
|
class TrackerTLDModel;
|
|
|
|
class TLDDetector {
|
|
public:
|
|
TLDDetector(const TrackerTLD::Params& params,Ptr<TrackerModel>model_in):model(model_in),params_(params){}
|
|
~TLDDetector(){}
|
|
static void generateScanGrid(int rows,int cols,Size initBox,std::vector<Rect2d>& res,bool withScaling=false);
|
|
bool detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::vector<Rect2d>& rect,std::vector<bool>& isObject,
|
|
std::vector<bool>& shouldBeIntegrated);
|
|
protected:
|
|
friend class MyMouseCallbackDEBUG;
|
|
Ptr<TrackerModel> model;
|
|
void computeIntegralImages(const Mat& img,Mat_<double>& intImgP,Mat_<double>& intImgP2){integral(img,intImgP,intImgP2,CV_64F);}
|
|
inline bool patchVariance(Mat_<double>& intImgP,Mat_<double>& intImgP2,double originalVariance,Point pt,Size size);
|
|
bool ensembleClassifier(const uchar* data,int rowstep){return ensembleClassifierNum(data,rowstep)>0.5;}
|
|
double ensembleClassifierNum(const uchar* data,int rowstep);
|
|
TrackerTLD::Params params_;
|
|
};
|
|
|
|
class Pexpert{
|
|
public:
|
|
Pexpert(const Mat& img,const Mat& imgBlurred,Rect2d& resultBox,const TLDDetector* detector,TrackerTLD::Params params,Size initSize):
|
|
img_(img),imgBlurred_(imgBlurred),resultBox_(resultBox),detector_(detector),params_(params),initSize_(initSize){}
|
|
bool operator()(Rect2d /*box*/){return false;}
|
|
int additionalExamples(std::vector<Mat_<uchar> >& examplesForModel,std::vector<Mat_<uchar> >& examplesForEnsemble);
|
|
protected:
|
|
Mat img_,imgBlurred_;
|
|
Rect2d resultBox_;
|
|
const TLDDetector* detector_;
|
|
TrackerTLD::Params params_;
|
|
RNG rng;
|
|
Size initSize_;
|
|
};
|
|
|
|
class Nexpert{
|
|
public:
|
|
Nexpert(const Mat& img,Rect2d& resultBox,const TLDDetector* detector,TrackerTLD::Params params):img_(img),resultBox_(resultBox),
|
|
detector_(detector),params_(params){}
|
|
bool operator()(Rect2d box);
|
|
int additionalExamples(std::vector<Mat_<uchar> >& examplesForModel,std::vector<Mat_<uchar> >& examplesForEnsemble){
|
|
examplesForModel.clear();examplesForEnsemble.clear();return 0;}
|
|
protected:
|
|
Mat img_;
|
|
Rect2d resultBox_;
|
|
const TLDDetector* detector_;
|
|
TrackerTLD::Params params_;
|
|
};
|
|
|
|
template <class T,class Tparams>
|
|
class TrackerProxyImpl : public TrackerProxy{
|
|
public:
|
|
TrackerProxyImpl(Tparams params=Tparams()):params_(params){}
|
|
bool init( const Mat& image, const Rect2d& boundingBox ){
|
|
trackerPtr=T::createTracker();
|
|
return trackerPtr->init(image,boundingBox);
|
|
}
|
|
bool update( const Mat& image,Rect2d& boundingBox){
|
|
return trackerPtr->update(image,boundingBox);
|
|
}
|
|
private:
|
|
Ptr<T> trackerPtr;
|
|
Tparams params_;
|
|
Rect2d boundingBox_;
|
|
};
|
|
|
|
class TrackerTLDModel : public TrackerModel{
|
|
public:
|
|
TrackerTLDModel(TrackerTLD::Params params,const Mat& image, const Rect2d& boundingBox,Size minSize);
|
|
Rect2d getBoundingBox(){return boundingBox_;}
|
|
void setBoudingBox(Rect2d boundingBox){boundingBox_=boundingBox;}
|
|
double getOriginalVariance(){return originalVariance_;}
|
|
std::vector<TLDEnsembleClassifier>* getClassifiers(){return &classifiers;}
|
|
double Sr(const Mat_<uchar>& patch);
|
|
double Sc(const Mat_<uchar>& patch);
|
|
void integrateRelabeled(Mat& img,Mat& imgBlurred,const std::vector<Rect2d>& box,const std::vector<bool>& isPositive,
|
|
const std::vector<bool>& alsoIntoModel);
|
|
void integrateAdditional(const std::vector<Mat_<uchar> >& eForModel,const std::vector<Mat_<uchar> >& eForEnsemble,bool isPositive);
|
|
Size getMinSize(){return minSize_;}
|
|
void printme(FILE* port=stdout);
|
|
protected:
|
|
Size minSize_;
|
|
unsigned int timeStampPositiveNext,timeStampNegativeNext;
|
|
TrackerTLD::Params params_;
|
|
void pushIntoModel(const Mat_<uchar>& example,bool positive);
|
|
void modelEstimationImpl( const std::vector<Mat>& /*responses*/ ){}
|
|
void modelUpdateImpl(){}
|
|
Rect2d boundingBox_;
|
|
double originalVariance_;
|
|
std::vector<Mat_<uchar> > positiveExamples,negativeExamples;
|
|
std::vector<unsigned int> timeStampsPositive,timeStampsNegative;
|
|
RNG rng;
|
|
std::vector<TLDEnsembleClassifier> classifiers;
|
|
};
|
|
|
|
class TrackerTLDImpl : public TrackerTLD
|
|
{
|
|
public:
|
|
TrackerTLDImpl( const TrackerTLD::Params ¶meters = TrackerTLD::Params() );
|
|
void read( const FileNode& fn );
|
|
void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
|
|
bool initImpl( const Mat& image, const Rect2d& boundingBox );
|
|
bool updateImpl( const Mat& image, Rect2d& boundingBox );
|
|
|
|
TrackerTLD::Params params;
|
|
Ptr<Data> data;
|
|
Ptr<TrackerProxy> trackerProxy;
|
|
Ptr<TLDDetector> detector;
|
|
};
|
|
|
|
|
|
TrackerTLD::Params::Params(){
|
|
}
|
|
|
|
void TrackerTLD::Params::read( const cv::FileNode& /*fn*/ ){
|
|
}
|
|
|
|
void TrackerTLD::Params::write( cv::FileStorage& /*fs*/ ) const{
|
|
}
|
|
|
|
Ptr<TrackerTLD> TrackerTLD::createTracker(const TrackerTLD::Params ¶meters){
|
|
return Ptr<TrackerTLDImpl>(new TrackerTLDImpl(parameters));
|
|
}
|
|
|
|
TrackerTLDImpl::TrackerTLDImpl( const TrackerTLD::Params ¶meters) :
|
|
params( parameters ){
|
|
isInit = false;
|
|
trackerProxy=Ptr<TrackerProxyImpl<TrackerMedianFlow,TrackerMedianFlow::Params> >(
|
|
new TrackerProxyImpl<TrackerMedianFlow,TrackerMedianFlow::Params>());
|
|
}
|
|
|
|
void TrackerTLDImpl::read( const cv::FileNode& fn )
|
|
{
|
|
params.read( fn );
|
|
}
|
|
|
|
void TrackerTLDImpl::write( cv::FileStorage& fs ) const
|
|
{
|
|
params.write( fs );
|
|
}
|
|
|
|
bool TrackerTLDImpl::initImpl(const Mat& image, const Rect2d& boundingBox ){
|
|
Mat image_gray;
|
|
trackerProxy->init(image,boundingBox);
|
|
cvtColor( image, image_gray, COLOR_BGR2GRAY );
|
|
data=Ptr<Data>(new Data(boundingBox));
|
|
double scale=data->getScale();
|
|
Rect2d myBoundingBox=boundingBox;
|
|
if(scale>1.0){
|
|
Mat image_proxy;
|
|
resize(image_gray,image_proxy,Size(cvRound(image.cols*scale),cvRound(image.rows*scale)),0,0,DOWNSCALE_MODE);
|
|
image_proxy.copyTo(image_gray);
|
|
myBoundingBox.x*=scale;
|
|
myBoundingBox.y*=scale;
|
|
myBoundingBox.width*=scale;
|
|
myBoundingBox.height*=scale;
|
|
}
|
|
model=Ptr<TrackerTLDModel>(new TrackerTLDModel(params,image_gray,myBoundingBox,data->getMinSize()));
|
|
detector=Ptr<TLDDetector>(new TLDDetector(params,model));
|
|
data->confident=false;
|
|
data->failedLastTime=false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool TrackerTLDImpl::updateImpl(const Mat& image, Rect2d& boundingBox){
|
|
Mat image_gray,image_blurred,imageForDetector;
|
|
cvtColor( image, image_gray, COLOR_BGR2GRAY );
|
|
double scale=data->getScale();
|
|
if(scale>1.0){
|
|
resize(image_gray,imageForDetector,Size(cvRound(image.cols*scale),cvRound(image.rows*scale)),0,0,DOWNSCALE_MODE);
|
|
}else{
|
|
imageForDetector=image_gray;
|
|
}
|
|
GaussianBlur(imageForDetector,image_blurred,GaussBlurKernelSize,0.0);
|
|
TrackerTLDModel* tldModel=((TrackerTLDModel*)static_cast<TrackerModel*>(model));
|
|
data->frameNum++;
|
|
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE,STANDARD_PATCH_SIZE);
|
|
std::vector<Rect2d> detectorResults;
|
|
std::vector<bool> isObject,shouldBeIntegrated;
|
|
//best overlap around 92%
|
|
|
|
Rect2d tmpCandid=boundingBox;
|
|
std::vector<Rect2d> candidates;
|
|
std::vector<double> candidatesRes;
|
|
bool trackerNeedsReInit=false;
|
|
for(int i=0;i<2;i++){
|
|
if(((i==0)&&!(data->failedLastTime)&&trackerProxy->update(image,tmpCandid)) ||
|
|
((i==1)&&(detector->detect(imageForDetector,image_blurred,tmpCandid,detectorResults,isObject,shouldBeIntegrated)))){
|
|
candidates.push_back(tmpCandid);
|
|
if(i==0){
|
|
resample(image_gray,tmpCandid,standardPatch);
|
|
}else{
|
|
resample(imageForDetector,tmpCandid,standardPatch);
|
|
}
|
|
candidatesRes.push_back(tldModel->Sc(standardPatch));
|
|
}else{
|
|
if(i==0){
|
|
trackerNeedsReInit=true;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<double>::iterator it=std::max_element(candidatesRes.begin(),candidatesRes.end());
|
|
|
|
dfprintf((stdout,"scale=%f\n",log(1.0*boundingBox.width/(data->getMinSize()).width)/log(SCALE_STEP)));
|
|
for(int i=0;i<(int)candidatesRes.size();i++){
|
|
dprintf(("\tcandidatesRes[%d]=%f\n",i,candidatesRes[i]));
|
|
}
|
|
data->printme();
|
|
tldModel->printme(stdout);
|
|
|
|
if(it==candidatesRes.end()){
|
|
data->confident=false;
|
|
data->failedLastTime=true;
|
|
return false;
|
|
}else{
|
|
boundingBox=candidates[it-candidatesRes.begin()];
|
|
data->failedLastTime=false;
|
|
if(trackerNeedsReInit || it!=candidatesRes.begin()){
|
|
trackerProxy->init(image,boundingBox);
|
|
}
|
|
}
|
|
|
|
if(!false && it!=candidatesRes.end()){
|
|
resample(imageForDetector,candidates[it-candidatesRes.begin()],standardPatch);
|
|
dfprintf((stderr,"%d %f %f\n",data->frameNum,tldModel->Sc(standardPatch),tldModel->Sr(standardPatch)));
|
|
if(candidatesRes.size()==2 && it==(candidatesRes.begin()+1))
|
|
dfprintf((stderr,"detector WON\n"));
|
|
}else{
|
|
dfprintf((stderr,"%d x x\n",data->frameNum));
|
|
}
|
|
|
|
if(*it > CORE_THRESHOLD){
|
|
data->confident=true;
|
|
}
|
|
|
|
if(data->confident){
|
|
Pexpert pExpert(imageForDetector,image_blurred,boundingBox,detector,params,data->getMinSize());
|
|
Nexpert nExpert(imageForDetector,boundingBox,detector,params);
|
|
bool expertResult;
|
|
std::vector<Mat_<uchar> > examplesForModel,examplesForEnsemble;
|
|
examplesForModel.reserve(100);examplesForEnsemble.reserve(100);
|
|
int negRelabeled=0;
|
|
for(int i=0;i<(int)detectorResults.size();i++){
|
|
if(isObject[i]){
|
|
expertResult=nExpert(detectorResults[i]);
|
|
if(expertResult!=isObject[i]){negRelabeled++;}
|
|
}else{
|
|
expertResult=pExpert(detectorResults[i]);
|
|
}
|
|
|
|
shouldBeIntegrated[i]=shouldBeIntegrated[i] || (isObject[i]!=expertResult);
|
|
isObject[i]=expertResult;
|
|
}
|
|
tldModel->integrateRelabeled(imageForDetector,image_blurred,detectorResults,isObject,shouldBeIntegrated);
|
|
dprintf(("%d relabeled by nExpert\n",negRelabeled));
|
|
pExpert.additionalExamples(examplesForModel,examplesForEnsemble);
|
|
tldModel->integrateAdditional(examplesForModel,examplesForEnsemble,true);
|
|
examplesForModel.clear();examplesForEnsemble.clear();
|
|
nExpert.additionalExamples(examplesForModel,examplesForEnsemble);
|
|
tldModel->integrateAdditional(examplesForModel,examplesForEnsemble,false);
|
|
}else{
|
|
#ifdef CLOSED_LOOP
|
|
tldModel->integrateRelabeled(imageForDetector,image_blurred,detectorResults,isObject,shouldBeIntegrated);
|
|
#endif
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
TrackerTLDModel::TrackerTLDModel(TrackerTLD::Params params,const Mat& image, const Rect2d& boundingBox,Size minSize):minSize_(minSize),
|
|
timeStampPositiveNext(0),timeStampNegativeNext(0),params_(params){
|
|
boundingBox_=boundingBox;
|
|
originalVariance_=variance(image(boundingBox));
|
|
std::vector<Rect2d> closest(10),scanGrid;
|
|
Mat scaledImg,blurredImg,image_blurred;
|
|
|
|
double scale=scaleAndBlur(image,cvRound(log(1.0*boundingBox.width/(minSize.width))/log(SCALE_STEP)),scaledImg,blurredImg,GaussBlurKernelSize);
|
|
GaussianBlur(image,image_blurred,GaussBlurKernelSize,0.0);
|
|
TLDDetector::generateScanGrid(image.rows,image.cols,minSize,scanGrid);
|
|
getClosestN(scanGrid,Rect2d(boundingBox.x/scale,boundingBox.y/scale,boundingBox.width/scale,boundingBox.height/scale),10,closest);
|
|
|
|
Mat_<uchar> blurredPatch(minSize);
|
|
for(int i=0,howMany=TLDEnsembleClassifier::getMaxOrdinal();i<howMany;i++){
|
|
classifiers.push_back(TLDEnsembleClassifier(i+1,minSize,MEASURES_PER_CLASSIFIER));
|
|
}
|
|
|
|
positiveExamples.reserve(200);
|
|
Point2f center;
|
|
Size2f size;
|
|
for(int i=0;i<(int)closest.size();i++){
|
|
for(int j=0;j<20;j++){
|
|
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE,STANDARD_PATCH_SIZE);
|
|
center.x=(float)(closest[i].x+closest[i].width*(0.5+rng.uniform(-0.01,0.01)));
|
|
center.y=(float)(closest[i].y+closest[i].height*(0.5+rng.uniform(-0.01,0.01)));
|
|
size.width=(float)(closest[i].width*rng.uniform((double)0.99,(double)1.01));
|
|
size.height=(float)(closest[i].height*rng.uniform((double)0.99,(double)1.01));
|
|
float angle=(float)rng.uniform(-10.0,10.0);
|
|
|
|
resample(scaledImg,RotatedRect(center,size,angle),standardPatch);
|
|
|
|
for(int y=0;y<standardPatch.rows;y++){
|
|
for(int x=0;x<standardPatch.cols;x++){
|
|
standardPatch(x,y)+=(uchar)rng.gaussian(5.0);
|
|
}
|
|
}
|
|
|
|
#ifdef BLUR_AS_VADIM
|
|
GaussianBlur(standardPatch,blurredPatch,GaussBlurKernelSize,0.0);
|
|
resize(blurredPatch,blurredPatch,minSize);
|
|
#else
|
|
resample(blurredImg,RotatedRect(center,size,angle),blurredPatch);
|
|
#endif
|
|
pushIntoModel(standardPatch,true);
|
|
for(int k=0;k<(int)classifiers.size();k++){
|
|
classifiers[k].integrate(blurredPatch,true);
|
|
}
|
|
}
|
|
}
|
|
|
|
TLDDetector::generateScanGrid(image.rows,image.cols,minSize,scanGrid,true);
|
|
negativeExamples.clear();
|
|
negativeExamples.reserve(NEG_EXAMPLES_IN_INIT_MODEL);
|
|
std::vector<int> indices;
|
|
indices.reserve(NEG_EXAMPLES_IN_INIT_MODEL);
|
|
while(negativeExamples.size()<NEG_EXAMPLES_IN_INIT_MODEL){
|
|
int i=rng.uniform((int)0,(int)scanGrid.size());
|
|
if(std::find(indices.begin(),indices.end(),i)==indices.end() && overlap(boundingBox,scanGrid[i])<0.2){
|
|
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE,STANDARD_PATCH_SIZE);
|
|
resample(image,scanGrid[i],standardPatch);
|
|
pushIntoModel(standardPatch,false);
|
|
|
|
resample(image_blurred,scanGrid[i],blurredPatch);
|
|
for(int k=0;k<(int)classifiers.size();k++){
|
|
classifiers[k].integrate(blurredPatch,false);
|
|
}
|
|
}
|
|
}
|
|
dprintf(("positive patches: %d\nnegative patches: %d\n",(int)positiveExamples.size(),(int)negativeExamples.size()));
|
|
}
|
|
|
|
void TLDDetector::generateScanGrid(int rows,int cols,Size initBox,std::vector<Rect2d>& res,bool withScaling){
|
|
res.clear();
|
|
//scales step: SCALE_STEP; hor step: 10% of width; verstep: 10% of height; minsize: 20pix
|
|
for(double h=initBox.height, w=initBox.width;h<cols && w<rows;){
|
|
for(double x=0;(x+w)<=(cols-1.0);x+=(0.1*w)){
|
|
for(double y=0;(y+h)<=(rows-1.0);y+=(0.1*h)){
|
|
res.push_back(Rect2d(x,y,w,h));
|
|
}
|
|
}
|
|
if(withScaling){
|
|
if(h<=initBox.height){
|
|
h/=SCALE_STEP; w/=SCALE_STEP;
|
|
if(h<20 || w<20){
|
|
h=initBox.height*SCALE_STEP; w=initBox.width*SCALE_STEP;
|
|
CV_Assert(h>initBox.height || w>initBox.width);
|
|
}
|
|
}else{
|
|
h*=SCALE_STEP; w*=SCALE_STEP;
|
|
}
|
|
}else{
|
|
break;
|
|
}
|
|
}
|
|
dprintf(("%d rects in res\n",(int)res.size()));
|
|
}
|
|
|
|
bool TLDDetector::detect(const Mat& img,const Mat& imgBlurred,Rect2d& res,std::vector<Rect2d>& rect,std::vector<bool>& isObject,
|
|
std::vector<bool>& shouldBeIntegrated){
|
|
TrackerTLDModel* tldModel=((TrackerTLDModel*)static_cast<TrackerModel*>(model));
|
|
Size initSize=tldModel->getMinSize();
|
|
rect.clear();
|
|
isObject.clear();
|
|
shouldBeIntegrated.clear();
|
|
|
|
Mat resized_img,blurred_img;
|
|
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE,STANDARD_PATCH_SIZE);
|
|
img.copyTo(resized_img);
|
|
imgBlurred.copyTo(blurred_img);
|
|
double originalVariance=tldModel->getOriginalVariance();;
|
|
int dx=initSize.width/10,dy=initSize.height/10;
|
|
Size2d size=img.size();
|
|
double scale=1.0;
|
|
int total=0,pass=0;
|
|
int npos=0,nneg=0;
|
|
double tmp=0,maxSc=-5.0;
|
|
Rect2d maxScRect;
|
|
START_TICK("detector");
|
|
do{
|
|
Mat_<double> intImgP,intImgP2;
|
|
computeIntegralImages(resized_img,intImgP,intImgP2);
|
|
|
|
for(int i=0,imax=cvFloor((0.0+resized_img.cols-initSize.width)/dx);i<imax;i++){
|
|
for(int j=0,jmax=cvFloor((0.0+resized_img.rows-initSize.height)/dy);j<jmax;j++){
|
|
total++;
|
|
if(!patchVariance(intImgP,intImgP2,originalVariance,Point(dx*i,dy*j),initSize)){
|
|
continue;
|
|
}
|
|
if(!ensembleClassifier(&blurred_img.at<uchar>(dy*j,dx*i),(int)blurred_img.step[0])){
|
|
continue;
|
|
}
|
|
pass++;
|
|
|
|
rect.push_back(Rect2d(dx*i*scale,dy*j*scale,initSize.width*scale,initSize.height*scale));
|
|
resample(resized_img,Rect2d(Point(dx*i,dy*j),initSize),standardPatch);
|
|
tmp=tldModel->Sr(standardPatch);
|
|
isObject.push_back(tmp>THETA_NN);
|
|
shouldBeIntegrated.push_back(abs(tmp-THETA_NN)<0.1);
|
|
if(!isObject[isObject.size()-1]){
|
|
nneg++;
|
|
continue;
|
|
}else{
|
|
npos++;
|
|
}
|
|
tmp=tldModel->Sc(standardPatch);
|
|
if(tmp>maxSc){
|
|
maxSc=tmp;
|
|
maxScRect=rect[rect.size()-1];
|
|
}
|
|
}
|
|
}
|
|
|
|
size.width/=SCALE_STEP;
|
|
size.height/=SCALE_STEP;
|
|
scale*=SCALE_STEP;
|
|
resize(img,resized_img,size,0,0,DOWNSCALE_MODE);
|
|
GaussianBlur(resized_img,blurred_img,GaussBlurKernelSize,0.0f);
|
|
}while(size.width>=initSize.width && size.height>=initSize.height);
|
|
END_TICK("detector");
|
|
|
|
dfprintf((stdout,"after NCC: nneg=%d npos=%d\n",nneg,npos));
|
|
#if !0
|
|
std::vector<Rect2d> poss,negs;
|
|
for(int i=0;i<(int)rect.size();i++){
|
|
if(isObject[i])
|
|
poss.push_back(rect[i]);
|
|
else
|
|
negs.push_back(rect[i]);
|
|
}
|
|
dfprintf((stdout,"%d pos and %d neg\n",(int)poss.size(),(int)negs.size()));
|
|
drawWithRects(img,negs,poss);
|
|
#endif
|
|
|
|
dfprintf((stdout,"%d after ensemble\n",pass));
|
|
if(maxSc<0){
|
|
return false;
|
|
}
|
|
res=maxScRect;
|
|
return true;
|
|
}
|
|
|
|
bool TLDDetector::patchVariance(Mat_<double>& intImgP,Mat_<double>& intImgP2,double originalVariance,Point pt,Size size){
|
|
return variance(intImgP,intImgP2,Rect(pt.x,pt.y,size.width,size.height)) >= 0.5*originalVariance;
|
|
}
|
|
|
|
double TLDDetector::ensembleClassifierNum(const uchar* data,int rowstep){
|
|
TrackerTLDModel* tldModel=((TrackerTLDModel*)static_cast<TrackerModel*>(model));
|
|
std::vector<TLDEnsembleClassifier>* classifiers=tldModel->getClassifiers();
|
|
double p=0;
|
|
for(int k=0;k<(int)classifiers->size();k++){
|
|
p+=(*classifiers)[k].posteriorProbability(data,rowstep);
|
|
}
|
|
p/=classifiers->size();
|
|
return p;
|
|
}
|
|
|
|
double TrackerTLDModel::Sr(const Mat_<uchar>& patch){
|
|
double splus=0.0;
|
|
for(int i=0;i<(int)positiveExamples.size();i++){
|
|
splus=std::max(splus,0.5*(NCC(positiveExamples[i],patch)+1.0));
|
|
}
|
|
double sminus=0.0;
|
|
for(int i=0;i<(int)negativeExamples.size();i++){
|
|
sminus=std::max(sminus,0.5*(NCC(negativeExamples[i],patch)+1.0));
|
|
}
|
|
if(splus+sminus==0.0){
|
|
return 0.0;
|
|
}
|
|
return splus/(sminus+splus);
|
|
}
|
|
|
|
double TrackerTLDModel::Sc(const Mat_<uchar>& patch){
|
|
double splus=0.0;
|
|
int med=getMedian(timeStampsPositive);
|
|
for(int i=0;i<(int)positiveExamples.size();i++){
|
|
if((int)timeStampsPositive[i]<=med){
|
|
splus=std::max(splus,0.5*(NCC(positiveExamples[i],patch)+1.0));
|
|
}
|
|
}
|
|
double sminus=0.0;
|
|
for(int i=0;i<(int)negativeExamples.size();i++){
|
|
sminus=std::max(sminus,0.5*(NCC(negativeExamples[i],patch)+1.0));
|
|
}
|
|
if(splus+sminus==0.0){
|
|
return 0.0;
|
|
}
|
|
return splus/(sminus+splus);
|
|
}
|
|
|
|
void TrackerTLDModel::integrateRelabeled(Mat& img,Mat& imgBlurred,const std::vector<Rect2d>& box,const std::vector<bool>& isPositive,
|
|
const std::vector<bool>& alsoIntoModel){
|
|
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE,STANDARD_PATCH_SIZE),blurredPatch(minSize_);
|
|
int positiveIntoModel=0,negativeIntoModel=0,positiveIntoEnsemble=0,negativeIntoEnsemble=0;
|
|
for(int k=0;k<(int)box.size();k++){
|
|
if(alsoIntoModel[k]){
|
|
resample(img,box[k],standardPatch);
|
|
if(isPositive[k]){
|
|
positiveIntoModel++;
|
|
pushIntoModel(standardPatch,true);
|
|
}else{
|
|
negativeIntoModel++;
|
|
pushIntoModel(standardPatch,false);
|
|
}
|
|
}
|
|
|
|
#ifdef CLOSED_LOOP
|
|
if(alsoIntoModel[k] || (isPositive[k]==false)){
|
|
#else
|
|
if(alsoIntoModel[k]){
|
|
#endif
|
|
resample(imgBlurred,box[k],blurredPatch);
|
|
if(isPositive[k]){
|
|
positiveIntoEnsemble++;
|
|
}else{
|
|
negativeIntoEnsemble++;
|
|
}
|
|
for(int i=0;i<(int)classifiers.size();i++){
|
|
classifiers[i].integrate(blurredPatch,isPositive[k]);
|
|
}
|
|
}
|
|
}
|
|
if(negativeIntoModel>0)
|
|
dfprintf((stdout,"negativeIntoModel=%d ",negativeIntoModel));
|
|
if(positiveIntoModel>0)
|
|
dfprintf((stdout,"positiveIntoModel=%d ",positiveIntoModel));
|
|
if(negativeIntoEnsemble>0)
|
|
dfprintf((stdout,"negativeIntoEnsemble=%d ",negativeIntoEnsemble));
|
|
if(positiveIntoEnsemble>0)
|
|
dfprintf((stdout,"positiveIntoEnsemble=%d ",positiveIntoEnsemble));
|
|
dfprintf((stdout,"\n"));
|
|
}
|
|
|
|
void TrackerTLDModel::integrateAdditional(const std::vector<Mat_<uchar> >& eForModel,const std::vector<Mat_<uchar> >& eForEnsemble,bool isPositive){
|
|
int positiveIntoModel=0,negativeIntoModel=0,positiveIntoEnsemble=0,negativeIntoEnsemble=0;
|
|
for(int k=0;k<(int)eForModel.size();k++){
|
|
double sr=Sr(eForModel[k]);
|
|
if((sr>THETA_NN)!=isPositive){
|
|
if(isPositive){
|
|
positiveIntoModel++;
|
|
pushIntoModel(eForModel[k],true);
|
|
}else{
|
|
negativeIntoModel++;
|
|
pushIntoModel(eForModel[k],false);
|
|
}
|
|
}
|
|
double p=0;
|
|
for(int i=0;i<(int)classifiers.size();i++){
|
|
p+=classifiers[i].posteriorProbability(eForEnsemble[k].data,(int)eForEnsemble[k].step[0]);
|
|
}
|
|
p/=classifiers.size();
|
|
if((p>0.5)!=isPositive){
|
|
if(isPositive){
|
|
positiveIntoEnsemble++;
|
|
}else{
|
|
negativeIntoEnsemble++;
|
|
}
|
|
for(int i=0;i<(int)classifiers.size();i++){
|
|
classifiers[i].integrate(eForEnsemble[k],isPositive);
|
|
}
|
|
}
|
|
}
|
|
if(negativeIntoModel>0)
|
|
dfprintf((stdout,"negativeIntoModel=%d ",negativeIntoModel));
|
|
if(positiveIntoModel>0)
|
|
dfprintf((stdout,"positiveIntoModel=%d ",positiveIntoModel));
|
|
if(negativeIntoEnsemble>0)
|
|
dfprintf((stdout,"negativeIntoEnsemble=%d ",negativeIntoEnsemble));
|
|
if(positiveIntoEnsemble>0)
|
|
dfprintf((stdout,"positiveIntoEnsemble=%d ",positiveIntoEnsemble));
|
|
dfprintf((stdout,"\n"));
|
|
}
|
|
|
|
int Pexpert::additionalExamples(std::vector<Mat_<uchar> >& examplesForModel,std::vector<Mat_<uchar> >& examplesForEnsemble){
|
|
examplesForModel.clear();examplesForEnsemble.clear();
|
|
examplesForModel.reserve(100);examplesForEnsemble.reserve(100);
|
|
|
|
std::vector<Rect2d> closest(10),scanGrid;
|
|
Mat scaledImg,blurredImg;
|
|
|
|
double scale=scaleAndBlur(img_,cvRound(log(1.0*resultBox_.width/(initSize_.width))/log(SCALE_STEP)),scaledImg,blurredImg,GaussBlurKernelSize);
|
|
TLDDetector::generateScanGrid(img_.rows,img_.cols,initSize_,scanGrid);
|
|
getClosestN(scanGrid,Rect2d(resultBox_.x/scale,resultBox_.y/scale,resultBox_.width/scale,resultBox_.height/scale),10,closest);
|
|
|
|
Point2f center;
|
|
Size2f size;
|
|
for(int i=0;i<(int)closest.size();i++){
|
|
for(int j=0;j<10;j++){
|
|
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE,STANDARD_PATCH_SIZE),blurredPatch(initSize_);
|
|
center.x=(float)(closest[i].x+closest[i].width*(0.5+rng.uniform(-0.01,0.01)));
|
|
center.y=(float)(closest[i].y+closest[i].height*(0.5+rng.uniform(-0.01,0.01)));
|
|
size.width=(float)(closest[i].width*rng.uniform((double)0.99,(double)1.01));
|
|
size.height=(float)(closest[i].height*rng.uniform((double)0.99,(double)1.01));
|
|
float angle=(float)rng.uniform(-5.0,5.0);
|
|
|
|
for(int y=0;y<standardPatch.rows;y++){
|
|
for(int x=0;x<standardPatch.cols;x++){
|
|
standardPatch(x,y)+=(uchar)rng.gaussian(5.0);
|
|
}
|
|
}
|
|
#ifdef BLUR_AS_VADIM
|
|
GaussianBlur(standardPatch,blurredPatch,GaussBlurKernelSize,0.0);
|
|
resize(blurredPatch,blurredPatch,initSize_);
|
|
#else
|
|
resample(blurredImg,RotatedRect(center,size,angle),blurredPatch);
|
|
#endif
|
|
resample(scaledImg,RotatedRect(center,size,angle),standardPatch);
|
|
examplesForModel.push_back(standardPatch);
|
|
examplesForEnsemble.push_back(blurredPatch);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool Nexpert::operator()(Rect2d box){
|
|
if(overlap(resultBox_,box)<0.2){
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Data::Data(Rect2d initBox){
|
|
double minDim=std::min(initBox.width,initBox.height);
|
|
scale = 20.0/minDim;
|
|
minSize.width=(int)(initBox.width*20.0/minDim);
|
|
minSize.height=(int)(initBox.height*20.0/minDim);
|
|
frameNum=0;
|
|
dprintf(("minSize= %dx%d\n",minSize.width,minSize.height));
|
|
}
|
|
|
|
void Data::printme(FILE* port){
|
|
dfprintf((port,"Data:\n"));
|
|
dfprintf((port,"\tframeNum=%d\n",frameNum));
|
|
dfprintf((port,"\tconfident=%s\n",confident?"true":"false"));
|
|
dfprintf((port,"\tfailedLastTime=%s\n",failedLastTime?"true":"false"));
|
|
dfprintf((port,"\tminSize=%dx%d\n",minSize.width,minSize.height));
|
|
}
|
|
void TrackerTLDModel::printme(FILE* port){
|
|
dfprintf((port,"TrackerTLDModel:\n"));
|
|
dfprintf((port,"\tpositiveExamples.size()=%d\n",(int)positiveExamples.size()));
|
|
dfprintf((port,"\tnegativeExamples.size()=%d\n",(int)negativeExamples.size()));
|
|
}
|
|
void MyMouseCallbackDEBUG::onMouse( int event, int x, int y){
|
|
if(event== EVENT_LBUTTONDOWN){
|
|
Mat imgCanvas;
|
|
img_.copyTo(imgCanvas);
|
|
TrackerTLDModel* tldModel=((TrackerTLDModel*)static_cast<TrackerModel*>(detector_->model));
|
|
Size initSize=tldModel->getMinSize();
|
|
Mat_<uchar> standardPatch(STANDARD_PATCH_SIZE,STANDARD_PATCH_SIZE);
|
|
double originalVariance=tldModel->getOriginalVariance();;
|
|
double tmp;
|
|
|
|
Mat resized_img,blurred_img;
|
|
double scale=SCALE_STEP;
|
|
//double scale=SCALE_STEP*SCALE_STEP*SCALE_STEP*SCALE_STEP;
|
|
Size2d size(img_.cols/scale,img_.rows/scale);
|
|
resize(img_,resized_img,size);
|
|
resize(imgBlurred_,blurred_img,size);
|
|
|
|
Mat_<double> intImgP,intImgP2;
|
|
detector_->computeIntegralImages(resized_img,intImgP,intImgP2);
|
|
|
|
int dx=initSize.width/10, dy=initSize.height/10,
|
|
i=(int)(x/scale/dx), j=(int)(y/scale/dy);
|
|
|
|
dfprintf((stderr,"patchVariance=%s\n",(detector_->patchVariance(intImgP,intImgP2,originalVariance,Point(dx*i,dy*j),initSize))?"true":"false"));
|
|
dfprintf((stderr,"p=%f\n",(detector_->ensembleClassifierNum(&blurred_img.at<uchar>(dy*j,dx*i),(int)blurred_img.step[0]))));
|
|
fprintf(stderr,"ensembleClassifier=%s\n",
|
|
(detector_->ensembleClassifier(&blurred_img.at<uchar>(dy*j,dx*i),(int)blurred_img.step[0]))?"true":"false");
|
|
|
|
resample(resized_img,Rect2d(Point(dx*i,dy*j),initSize),standardPatch);
|
|
tmp=tldModel->Sr(standardPatch);
|
|
dfprintf((stderr,"Sr=%f\n",tmp));
|
|
dfprintf((stderr,"isObject=%s\n",(tmp>THETA_NN)?"true":"false"));
|
|
dfprintf((stderr,"shouldBeIntegrated=%s\n",(abs(tmp-THETA_NN)<0.1)?"true":"false"));
|
|
dfprintf((stderr,"Sc=%f\n",tldModel->Sc(standardPatch)));
|
|
|
|
rectangle(imgCanvas,Rect2d(Point2d(scale*dx*i,scale*dy*j),Size2d(initSize.width*scale,initSize.height*scale)), 0, 2, 1 );
|
|
imshow("picker",imgCanvas);
|
|
waitKey();
|
|
}
|
|
}
|
|
void TrackerTLDModel::pushIntoModel(const Mat_<uchar>& example,bool positive){
|
|
std::vector<Mat_<uchar> >* proxyV;
|
|
unsigned int* proxyN;
|
|
std::vector<unsigned int>* proxyT;
|
|
if(positive){
|
|
proxyV=&positiveExamples;
|
|
proxyN=&timeStampPositiveNext;
|
|
proxyT=&timeStampsPositive;
|
|
}else{
|
|
proxyV=&negativeExamples;
|
|
proxyN=&timeStampNegativeNext;
|
|
proxyT=&timeStampsNegative;
|
|
}
|
|
if(proxyV->size()<MAX_EXAMPLES_IN_MODEL){
|
|
proxyV->push_back(example);
|
|
proxyT->push_back(*proxyN);
|
|
}else{
|
|
int index=rng.uniform((int)0,(int)proxyV->size());
|
|
(*proxyV)[index]=example;
|
|
(*proxyT)[index]=(*proxyN);
|
|
}
|
|
(*proxyN)++;
|
|
}
|
|
|
|
} /* namespace cv */
|