mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-24 11:33:26 +08:00
replaced "const InputArray" with "InputArray" to avoid warnings about "const const _InputArray&"
145 lines
5.1 KiB
C++
145 lines
5.1 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
//
|
||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
//
|
||
// By downloading, copying, installing or using the software you agree to this license.
|
||
// If you do not agree to this license, do not download, install,
|
||
// copy or use the software.
|
||
//
|
||
//
|
||
// License Agreement
|
||
// For Open Source Computer Vision Library
|
||
//
|
||
// Copyright (C) 2014, OpenCV Foundation, all rights reserved.
|
||
// Third party copyrights are property of their respective owners.
|
||
//
|
||
// Redistribution and use in source and binary forms, with or without modification,
|
||
// are permitted provided that the following conditions are met:
|
||
//
|
||
// * Redistribution's of source code must retain the above copyright notice,
|
||
// this list of conditions and the following disclaimer.
|
||
//
|
||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
// this list of conditions and the following disclaimer in the documentation
|
||
// and/or other materials provided with the distribution.
|
||
//
|
||
// * The name of the copyright holders may not be used to endorse or promote products
|
||
// derived from this software without specific prior written permission.
|
||
//
|
||
// This software is provided by the copyright holders and contributors "as is" and
|
||
// any express or implied warranties, including, but not limited to, the implied
|
||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
// indirect, incidental, special, exemplary, or consequential damages
|
||
// (including, but not limited to, procurement of substitute goods or services;
|
||
// loss of use, data, or profits; or business interruption) however caused
|
||
// and on any theory of liability, whether in contract, strict liability,
|
||
// or tort (including negligence or otherwise) arising in any way out of
|
||
// the use of this software, even if advised of the possibility of such damage.
|
||
//
|
||
//M*/
|
||
|
||
#ifndef __OPENCV_SALIENCY_BASE_CLASSES_HPP__
|
||
#define __OPENCV_SALIENCY_BASE_CLASSES_HPP__
|
||
|
||
#include "opencv2/core.hpp"
|
||
#include <opencv2/core/persistence.hpp>
|
||
#include "opencv2/imgproc.hpp"
|
||
#include <iostream>
|
||
#include <sstream>
|
||
#include <complex>
|
||
|
||
namespace cv
|
||
{
|
||
namespace saliency
|
||
{
|
||
|
||
//! @addtogroup saliency
|
||
//! @{
|
||
|
||
/************************************ Saliency Base Class ************************************/
|
||
|
||
class CV_EXPORTS Saliency : public virtual Algorithm
|
||
{
|
||
public:
|
||
/**
|
||
* \brief Destructor
|
||
*/
|
||
virtual ~Saliency();
|
||
|
||
/**
|
||
* \brief Create Saliency by saliency type.
|
||
*/
|
||
static Ptr<Saliency> create( const String& saliencyType );
|
||
|
||
/**
|
||
* \brief Compute the saliency
|
||
* \param image The image.
|
||
* \param saliencyMap The computed saliency map.
|
||
* \return true if the saliency map is computed, false otherwise
|
||
*/
|
||
bool computeSaliency( InputArray image, OutputArray saliencyMap );
|
||
|
||
/**
|
||
* \brief Get the name of the specific saliency type
|
||
* \return The name of the tracker initializer
|
||
*/
|
||
String getClassName() const;
|
||
|
||
protected:
|
||
|
||
virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) = 0;
|
||
String className;
|
||
};
|
||
|
||
/************************************ Static Saliency Base Class ************************************/
|
||
class CV_EXPORTS StaticSaliency : public virtual Saliency
|
||
{
|
||
public:
|
||
|
||
/** @brief This function perform a binary map of given saliency map. This is obtained in this
|
||
way:
|
||
|
||
In a first step, to improve the definition of interest areas and facilitate identification of
|
||
targets, a segmentation by clustering is performed, using *K-means algorithm*. Then, to gain a
|
||
binary representation of clustered saliency map, since values of the map can vary according to
|
||
the characteristics of frame under analysis, it is not convenient to use a fixed threshold. So,
|
||
*Otsu’s algorithm* is used, which assumes that the image to be thresholded contains two classes
|
||
of pixels or bi-modal histograms (e.g. foreground and back-ground pixels); later on, the
|
||
algorithm calculates the optimal threshold separating those two classes, so that their
|
||
intra-class variance is minimal.
|
||
|
||
@param saliencyMap the saliency map obtained through one of the specialized algorithms
|
||
@param binaryMap the binary map
|
||
*/
|
||
bool computeBinaryMap( const Mat& saliencyMap, Mat& binaryMap );
|
||
protected:
|
||
virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap )=0;
|
||
|
||
};
|
||
|
||
/************************************ Motion Saliency Base Class ************************************/
|
||
class CV_EXPORTS MotionSaliency : public virtual Saliency
|
||
{
|
||
|
||
protected:
|
||
virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap )=0;
|
||
|
||
};
|
||
|
||
/************************************ Objectness Base Class ************************************/
|
||
class CV_EXPORTS Objectness : public virtual Saliency
|
||
{
|
||
|
||
protected:
|
||
virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap )=0;
|
||
|
||
};
|
||
|
||
//! @}
|
||
|
||
} /* namespace saliency */
|
||
} /* namespace cv */
|
||
|
||
#endif
|