mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-19 02:16:34 +08:00
220 lines
7.0 KiB
C++
220 lines
7.0 KiB
C++
/*
|
|
* By downloading, copying, installing or using the software you agree to this license.
|
|
* If you do not agree to this license, do not download, install,
|
|
* copy or use the software.
|
|
*
|
|
*
|
|
* License Agreement
|
|
* For Open Source Computer Vision Library
|
|
* (3 - clause BSD License)
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met :
|
|
*
|
|
* *Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* * Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and / or other materials provided with the distribution.
|
|
*
|
|
* * Neither the names of the copyright holders nor the names of the contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* This software is provided by the copyright holders and contributors "as is" and
|
|
* any express or implied warranties, including, but not limited to, the implied
|
|
* warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
* In no event shall copyright holders or contributors be liable for any direct,
|
|
* indirect, incidental, special, exemplary, or consequential damages
|
|
* (including, but not limited to, procurement of substitute goods or services;
|
|
* loss of use, data, or profits; or business interruption) however caused
|
|
* and on any theory of liability, whether in contract, strict liability,
|
|
* or tort(including negligence or otherwise) arising in any way out of
|
|
* the use of this software, even if advised of the possibility of such damage.
|
|
*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace cvtest
|
|
{
|
|
|
|
using namespace std;
|
|
using namespace std::tr1;
|
|
using namespace testing;
|
|
using namespace cv;
|
|
using namespace cv::ximgproc;
|
|
|
|
#ifndef SQR
|
|
#define SQR(x) ((x)*(x))
|
|
#endif
|
|
|
|
static string getOpenCVExtraDir()
|
|
{
|
|
return cvtest::TS::ptr()->get_data_path();
|
|
}
|
|
|
|
static void checkSimilarity(InputArray res, InputArray ref, double maxNormInf = 1, double maxNormL2 = 1.0 / 64)
|
|
{
|
|
double normInf = cvtest::norm(res, ref, NORM_INF);
|
|
double normL2 = cvtest::norm(res, ref, NORM_L2) / res.total();
|
|
|
|
if (maxNormInf >= 0) EXPECT_LE(normInf, maxNormInf);
|
|
if (maxNormL2 >= 0) EXPECT_LE(normL2, maxNormL2);
|
|
}
|
|
|
|
TEST(AdaptiveManifoldTest, SplatSurfaceAccuracy)
|
|
{
|
|
RNG rnd(0);
|
|
|
|
cv::setNumThreads(cv::getNumberOfCPUs());
|
|
|
|
for (int i = 0; i < 5; i++)
|
|
{
|
|
Size sz(rnd.uniform(512, 1024), rnd.uniform(512, 1024));
|
|
|
|
int guideCn = rnd.uniform(1, 8);
|
|
Mat guide(sz, CV_MAKE_TYPE(CV_32F, guideCn));
|
|
randu(guide, 0, 1);
|
|
|
|
Scalar surfaceValue;
|
|
int srcCn = rnd.uniform(1, 4);
|
|
rnd.fill(surfaceValue, RNG::UNIFORM, 0, 255);
|
|
Mat src(sz, CV_MAKE_TYPE(CV_8U, srcCn), surfaceValue);
|
|
|
|
double sigma_s = rnd.uniform(1.0, 50.0);
|
|
double sigma_r = rnd.uniform(0.1, 0.9);
|
|
|
|
Mat res;
|
|
amFilter(guide, src, res, sigma_s, sigma_r, false);
|
|
|
|
double normInf = cvtest::norm(src, res, NORM_INF);
|
|
EXPECT_EQ(normInf, 0);
|
|
}
|
|
}
|
|
|
|
TEST(AdaptiveManifoldTest, AuthorsReferenceAccuracy)
|
|
{
|
|
String srcImgPath = "cv/edgefilter/kodim23.png";
|
|
|
|
String refPaths[] =
|
|
{
|
|
"cv/edgefilter/amf/kodim23_amf_ss5_sr0.3_ref.png",
|
|
"cv/edgefilter/amf/kodim23_amf_ss30_sr0.1_ref.png",
|
|
"cv/edgefilter/amf/kodim23_amf_ss50_sr0.3_ref.png"
|
|
};
|
|
|
|
pair<double, double> refParams[] =
|
|
{
|
|
make_pair(5.0, 0.3),
|
|
make_pair(30.0, 0.1),
|
|
make_pair(50.0, 0.3)
|
|
};
|
|
|
|
String refOutliersPaths[] =
|
|
{
|
|
"cv/edgefilter/amf/kodim23_amf_ss5_sr0.1_outliers_ref.png",
|
|
"cv/edgefilter/amf/kodim23_amf_ss15_sr0.3_outliers_ref.png",
|
|
"cv/edgefilter/amf/kodim23_amf_ss50_sr0.5_outliers_ref.png"
|
|
};
|
|
|
|
pair<double, double> refOutliersParams[] =
|
|
{
|
|
make_pair(5.0, 0.1),
|
|
make_pair(15.0, 0.3),
|
|
make_pair(50.0, 0.5),
|
|
};
|
|
|
|
Mat srcImg = imread(getOpenCVExtraDir() + srcImgPath);
|
|
ASSERT_TRUE(!srcImg.empty());
|
|
|
|
cv::setNumThreads(cv::getNumberOfCPUs());
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
Mat refRes = imread(getOpenCVExtraDir() + refPaths[i]);
|
|
double sigma_s = refParams[i].first;
|
|
double sigma_r = refParams[i].second;
|
|
ASSERT_TRUE(!refRes.empty());
|
|
|
|
Mat res;
|
|
Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, false);
|
|
amf->setUseRNG(false);
|
|
amf->filter(srcImg, res, srcImg);
|
|
amf->collectGarbage();
|
|
|
|
checkSimilarity(res, refRes);
|
|
}
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
Mat refRes = imread(getOpenCVExtraDir() + refOutliersPaths[i]);
|
|
double sigma_s = refOutliersParams[i].first;
|
|
double sigma_r = refOutliersParams[i].second;
|
|
ASSERT_TRUE(!refRes.empty());
|
|
|
|
Mat res;
|
|
Ptr<AdaptiveManifoldFilter> amf = createAMFilter(sigma_s, sigma_r, true);
|
|
amf->setUseRNG(false);
|
|
amf->filter(srcImg, res, srcImg);
|
|
amf->collectGarbage();
|
|
|
|
checkSimilarity(res, refRes);
|
|
}
|
|
}
|
|
|
|
typedef tuple<string, string> AMRefTestParams;
|
|
typedef TestWithParam<AMRefTestParams> AdaptiveManifoldRefImplTest;
|
|
|
|
Ptr<AdaptiveManifoldFilter> createAMFilterRefImpl(double sigma_s, double sigma_r, bool adjust_outliers = false);
|
|
|
|
TEST_P(AdaptiveManifoldRefImplTest, RefImplAccuracy)
|
|
{
|
|
AMRefTestParams params = GetParam();
|
|
|
|
string guideFileName = get<0>(params);
|
|
string srcFileName = get<1>(params);
|
|
|
|
Mat guide = imread(getOpenCVExtraDir() + guideFileName);
|
|
Mat src = imread(getOpenCVExtraDir() + srcFileName);
|
|
ASSERT_TRUE(!guide.empty() && !src.empty());
|
|
|
|
int seed = 10 * (int)guideFileName.length() + (int)srcFileName.length();
|
|
RNG rnd(seed);
|
|
|
|
//inconsistent downsample/upsample operations in reference implementation
|
|
Size dstSize((guide.cols + 15) & ~15, (guide.rows + 15) & ~15);
|
|
|
|
resize(guide, guide, dstSize);
|
|
resize(src, src, dstSize);
|
|
|
|
for (int iter = 0; iter < 4; iter++)
|
|
{
|
|
double sigma_s = rnd.uniform(1.0, 50.0);
|
|
double sigma_r = rnd.uniform(0.1, 0.9);
|
|
bool adjust_outliers = (iter % 2 == 0);
|
|
|
|
cv::setNumThreads(cv::getNumberOfCPUs());
|
|
Mat res;
|
|
amFilter(guide, src, res, sigma_s, sigma_r, adjust_outliers);
|
|
|
|
cv::setNumThreads(1);
|
|
Mat resRef;
|
|
Ptr<AdaptiveManifoldFilter> amf = createAMFilterRefImpl(sigma_s, sigma_r, adjust_outliers);
|
|
amf->filter(src, resRef, guide);
|
|
|
|
//results of reference implementation may differ on small sigma_s into small isolated region
|
|
//due to low single-precision floating point numbers accuracy
|
|
//therefore the threshold of inf norm was increased
|
|
checkSimilarity(res, resRef, 25);
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(TypicalSet, AdaptiveManifoldRefImplTest,
|
|
Combine(
|
|
Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png"),
|
|
Values("cv/edgefilter/kodim23.png", "cv/npr/test4.png")
|
|
));
|
|
|
|
}
|