1
0
mirror of https://github.com/opencv/opencv_contrib.git synced 2025-10-22 16:08:41 +08:00
Files
opencv_contrib/modules/surface_matching/src/c_utils.hpp
2014-09-03 10:14:07 +02:00

761 lines
21 KiB
C++

//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// Author: Tolga Birdal <tbirdal AT gmail.com>
#ifndef __OPENCV_SURFACE_MATCHING_UTILS_HPP_
#define __OPENCV_SURFACE_MATCHING_UTILS_HPP_
#include <cmath>
#include <cstdio>
namespace cv
{
namespace ppf_match_3d
{
const float EPS = 1.192092896e-07F; /* smallest such that 1.0+FLT_EPSILON != 1.0 */
#ifndef M_PI
#define M_PI 3.1415926535897932384626433832795
#endif
static inline double TNorm3(const double v[])
{
return (sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]));
}
static inline void TNormalize3(double v[])
{
double normTemp=TNorm3(v);
if (normTemp>0)
{
v[0]/=normTemp;
v[1]/=normTemp;
v[2]/=normTemp;
}
}
static inline double TDot3(const double a[3], const double b[3])
{
return ((a[0])*(b[0])+(a[1])*(b[1])+(a[2])*(b[2]));
}
static inline void TCross(const double a[], const double b[], double c[])
{
c[0] = (a[1])*(b[2])-(a[2])*(b[1]);
c[1] = (a[2])*(b[0])-(a[0])*(b[2]);
c[2] = (a[0])*(b[1])-(a[1])*(b[0]);
}
static inline double TAngle3(const double a[3], const double b[3])
{
double c[3];
TCross(a,b,c);
return (atan2(TNorm3(c), TDot3(a, b)));
}
static inline void matrixProduct33(double *A, double *B, double *R)
{
R[0] = A[0] * B[0] + A[1] * B[3] + A[2] * B[6];
R[1] = A[0] * B[1] + A[1] * B[4] + A[2] * B[7];
R[2] = A[0] * B[2] + A[1] * B[5] + A[2] * B[8];
R[3] = A[3] * B[0] + A[4] * B[3] + A[5] * B[6];
R[4] = A[3] * B[1] + A[4] * B[4] + A[5] * B[7];
R[5] = A[3] * B[2] + A[4] * B[5] + A[5] * B[8];
R[6] = A[6] * B[0] + A[7] * B[3] + A[8] * B[6];
R[7] = A[6] * B[1] + A[7] * B[4] + A[8] * B[7];
R[8] = A[6] * B[2] + A[7] * B[5] + A[8] * B[8];
}
// A is a vector
static inline void matrixProduct133(double *A, double *B, double *R)
{
R[0] = A[0] * B[0] + A[1] * B[3] + A[2] * B[6];
R[1] = A[0] * B[1] + A[1] * B[4] + A[2] * B[7];
R[2] = A[0] * B[2] + A[1] * B[5] + A[2] * B[8];
}
static inline void matrixProduct331(const double A[9], const double b[3], double r[3])
{
r[0] = A[0] * b[0] + A[1] * b[1] + A[2] * b[2];
r[1] = A[3] * b[0] + A[4] * b[1] + A[5] * b[2];
r[2] = A[6] * b[0] + A[7] * b[1] + A[8] * b[2];
}
static inline void matrixTranspose33(double *A, double *At)
{
At[0] = A[0];
At[4] = A[4];
At[8] = A[8];
At[1] = A[3];
At[2] = A[6];
At[3] = A[1];
At[5] = A[7];
At[6] = A[2];
At[7] = A[5];
}
static inline void matrixProduct44(const double A[16], const double B[16], double R[16])
{
R[0] = A[0] * B[0] + A[1] * B[4] + A[2] * B[8] + A[3] * B[12];
R[1] = A[0] * B[1] + A[1] * B[5] + A[2] * B[9] + A[3] * B[13];
R[2] = A[0] * B[2] + A[1] * B[6] + A[2] * B[10] + A[3] * B[14];
R[3] = A[0] * B[3] + A[1] * B[7] + A[2] * B[11] + A[3] * B[15];
R[4] = A[4] * B[0] + A[5] * B[4] + A[6] * B[8] + A[7] * B[12];
R[5] = A[4] * B[1] + A[5] * B[5] + A[6] * B[9] + A[7] * B[13];
R[6] = A[4] * B[2] + A[5] * B[6] + A[6] * B[10] + A[7] * B[14];
R[7] = A[4] * B[3] + A[5] * B[7] + A[6] * B[11] + A[7] * B[15];
R[8] = A[8] * B[0] + A[9] * B[4] + A[10] * B[8] + A[11] * B[12];
R[9] = A[8] * B[1] + A[9] * B[5] + A[10] * B[9] + A[11] * B[13];
R[10] = A[8] * B[2] + A[9] * B[6] + A[10] * B[10] + A[11] * B[14];
R[11] = A[8] * B[3] + A[9] * B[7] + A[10] * B[11] + A[11] * B[15];
R[12] = A[12] * B[0] + A[13] * B[4] + A[14] * B[8] + A[15] * B[12];
R[13] = A[12] * B[1] + A[13] * B[5] + A[14] * B[9] + A[15] * B[13];
R[14] = A[12] * B[2] + A[13] * B[6] + A[14] * B[10] + A[15] * B[14];
R[15] = A[12] * B[3] + A[13] * B[7] + A[14] * B[11] + A[15] * B[15];
}
static inline void matrixProduct441(const double A[16], const double B[4], double R[4])
{
R[0] = A[0] * B[0] + A[1] * B[1] + A[2] * B[2] + A[3] * B[3];
R[1] = A[4] * B[0] + A[5] * B[1] + A[6] * B[2] + A[7] * B[3];
R[2] = A[8] * B[0] + A[9] * B[1] + A[10] * B[2] + A[11] * B[3];
R[3] = A[12] * B[0] + A[13] * B[1] + A[14] * B[2] + A[15] * B[3];
}
static inline void matrixPrint(double *A, int m, int n)
{
int i, j;
for (i = 0; i < m; i++)
{
printf(" ");
for (j = 0; j < n; j++)
{
printf(" %0.6f ", A[i * n + j]);
}
printf("\n");
}
}
static inline void matrixIdentity(int n, double *A)
{
int i;
for (i = 0; i < n*n; i++)
{
A[i] = 0.0;
}
for (i = 0; i < n; i++)
{
A[i * n + i] = 1.0;
}
}
static inline void rtToPose(const double R[9], const double t[3], double Pose[16])
{
Pose[0]=R[0];
Pose[1]=R[1];
Pose[2]=R[2];
Pose[4]=R[3];
Pose[5]=R[4];
Pose[6]=R[5];
Pose[8]=R[6];
Pose[9]=R[7];
Pose[10]=R[8];
Pose[3]=t[0];
Pose[7]=t[1];
Pose[11]=t[2];
Pose[15] = 1;
}
static inline void poseToRT(const double Pose[16], double R[9], double t[3])
{
R[0] = Pose[0];
R[1] = Pose[1];
R[2] = Pose[2];
R[3] = Pose[4];
R[4] = Pose[5];
R[5] = Pose[6];
R[6] = Pose[8];
R[7] = Pose[9];
R[8] = Pose[10];
t[0]=Pose[3];
t[1]=Pose[7];
t[2]=Pose[11];
}
static inline void poseToR(const double Pose[16], double R[9])
{
R[0] = Pose[0];
R[1] = Pose[1];
R[2] = Pose[2];
R[3] = Pose[4];
R[4] = Pose[5];
R[5] = Pose[6];
R[6] = Pose[8];
R[7] = Pose[9];
R[8] = Pose[10];
}
/**
* \brief Axis angle to rotation but only compute y and z components
*/
static inline void aaToRyz(double angle, const double r[3], double row2[3], double row3[3])
{
const double sinA=sin(angle);
const double cosA=cos(angle);
const double cos1A=(1-cosA);
row2[0] = 0.f;
row2[1] = cosA;
row2[2] = 0.f;
row3[0] = 0.f;
row3[1] = 0.f;
row3[2] = cosA;
row2[0] += r[2] * sinA;
row2[2] += -r[0] * sinA;
row3[0] += -r[1] * sinA;
row3[1] += r[0] * sinA;
row2[0] += r[1] * r[0] * cos1A;
row2[1] += r[1] * r[1] * cos1A;
row2[2] += r[1] * r[2] * cos1A;
row3[0] += r[2] * r[0] * cos1A;
row3[1] += r[2] * r[1] * cos1A;
row3[2] += r[2] * r[2] * cos1A;
}
/**
* \brief Axis angle to rotation
*/
static inline void aaToR(double angle, const double r[3], double R[9])
{
const double sinA=sin(angle);
const double cosA=cos(angle);
const double cos1A=(1-cosA);
double *row1 = &R[0];
double *row2 = &R[3];
double *row3 = &R[6];
row1[0] = cosA;
row1[1] = 0.0f;
row1[2] = 0.f;
row2[0] = 0.f;
row2[1] = cosA;
row2[2] = 0.f;
row3[0] = 0.f;
row3[1] = 0.f;
row3[2] = cosA;
row1[1] += -r[2] * sinA;
row1[2] += r[1] * sinA;
row2[0] += r[2] * sinA;
row2[2] += -r[0] * sinA;
row3[0] += -r[1] * sinA;
row3[1] += r[0] * sinA;
row1[0] += r[0] * r[0] * cos1A;
row1[1] += r[0] * r[1] * cos1A;
row1[2] += r[0] * r[2] * cos1A;
row2[0] += r[1] * r[0] * cos1A;
row2[1] += r[1] * r[1] * cos1A;
row2[2] += r[1] * r[2] * cos1A;
row3[0] += r[2] * r[0] * cos1A;
row3[1] += r[2] * r[1] * cos1A;
row3[2] += r[2] * r[2] * cos1A;
}
/**
* \brief Compute a rotation in order to rotate around X direction
*/
static inline void getUnitXRotation(double angle, double R[9])
{
const double sinA=sin(angle);
const double cosA=cos(angle);
double *row1 = &R[0];
double *row2 = &R[3];
double *row3 = &R[6];
row1[0] = 1;
row1[1] = 0.0f;
row1[2] = 0.f;
row2[0] = 0.f;
row2[1] = cosA;
row2[2] = -sinA;
row3[0] = 0.f;
row3[1] = sinA;
row3[2] = cosA;
}
/**
* \brief Compute a transformation in order to rotate around X direction
*/
static inline void getUnitXRotation_44(double angle, double T[16])
{
const double sinA=sin(angle);
const double cosA=cos(angle);
double *row1 = &T[0];
double *row2 = &T[4];
double *row3 = &T[8];
row1[0] = 1;
row1[1] = 0.0f;
row1[2] = 0.f;
row2[0] = 0.f;
row2[1] = cosA;
row2[2] = -sinA;
row3[0] = 0.f;
row3[1] = sinA;
row3[2] = cosA;
row1[3]=0;
row2[3]=0;
row3[3]=0;
T[3]=0;
T[7]=0;
T[11]=0;
T[15] = 1;
}
/**
* \brief Compute the yz components of the transformation needed to rotate n1 onto x axis and p1 to origin
*/
static inline void computeTransformRTyz(const double p1[4], const double n1[4], double row2[3], double row3[3], double t[3])
{
// dot product with x axis
double angle=acos( n1[0] );
// cross product with x axis
double axis[3]={0, n1[2], -n1[1]};
double axisNorm;
// we try to project on the ground plane but it's already parallel
if (n1[1]==0 && n1[2]==0)
{
axis[1]=1;
axis[2]=0;
}
else
{
axisNorm=sqrt(axis[2]*axis[2]+axis[1]*axis[1]);
if (axisNorm>EPS)
{
axis[1]/=axisNorm;
axis[2]/=axisNorm;
}
}
aaToRyz(angle, axis, row2, row3);
t[1] = row2[0] * (-p1[0]) + row2[1] * (-p1[1]) + row2[2] * (-p1[2]);
t[2] = row3[0] * (-p1[0]) + row3[1] * (-p1[1]) + row3[2] * (-p1[2]);
}
/**
* \brief Compute the transformation needed to rotate n1 onto x axis and p1 to origin
*/
static inline void computeTransformRT(const double p1[4], const double n1[4], double R[9], double t[3])
{
// dot product with x axis
double angle=acos( n1[0] );
// cross product with x axis
double axis[3]={0, n1[2], -n1[1]};
double axisNorm;
double *row1, *row2, *row3;
// we try to project on the ground plane but it's already parallel
if (n1[1]==0 && n1[2]==0)
{
axis[1]=1;
axis[2]=0;
}
else
{
axisNorm=sqrt(axis[2]*axis[2]+axis[1]*axis[1]);
if (axisNorm>EPS)
{
axis[1]/=axisNorm;
axis[2]/=axisNorm;
}
}
aaToR(angle, axis, R);
row1 = &R[0];
row2 = &R[3];
row3 = &R[6];
t[0] = row1[0] * (-p1[0]) + row1[1] * (-p1[1]) + row1[2] * (-p1[2]);
t[1] = row2[0] * (-p1[0]) + row2[1] * (-p1[1]) + row2[2] * (-p1[2]);
t[2] = row3[0] * (-p1[0]) + row3[1] * (-p1[1]) + row3[2] * (-p1[2]);
}
/**
* \brief Flip a normal to the viewing direction
*
* \param [in] point Scene point
* \param [in] vp_x X component of view direction
* \param [in] vp_y Y component of view direction
* \param [in] vp_z Z component of view direction
* \param [in] nx X component of normal
* \param [in] ny Y component of normal
* \param [in] nz Z component of normal
*/
static inline void flipNormalViewpoint(const float* point, double vp_x, double vp_y, double vp_z, double *nx, double *ny, double *nz)
{
double cos_theta;
// See if we need to flip any plane normals
vp_x -= (double)point[0];
vp_y -= (double)point[1];
vp_z -= (double)point[2];
// Dot product between the (viewpoint - point) and the plane normal
cos_theta = (vp_x * (*nx) + vp_y * (*ny) + vp_z * (*nz));
// Flip the plane normal
if (cos_theta < 0)
{
(*nx) *= -1;
(*ny) *= -1;
(*nz) *= -1;
}
}
/**
* \brief Flip a normal to the viewing direction
*
* \param [in] point Scene point
* \param [in] vp_x X component of view direction
* \param [in] vp_y Y component of view direction
* \param [in] vp_z Z component of view direction
* \param [in] nx X component of normal
* \param [in] ny Y component of normal
* \param [in] nz Z component of normal
*/
static inline void flipNormalViewpoint_32f(const float* point, float vp_x, float vp_y, float vp_z, float *nx, float *ny, float *nz)
{
float cos_theta;
// See if we need to flip any plane normals
vp_x -= (float)point[0];
vp_y -= (float)point[1];
vp_z -= (float)point[2];
// Dot product between the (viewpoint - point) and the plane normal
cos_theta = (vp_x * (*nx) + vp_y * (*ny) + vp_z * (*nz));
// Flip the plane normal
if (cos_theta < 0)
{
(*nx) *= -1;
(*ny) *= -1;
(*nz) *= -1;
}
}
/**
* \brief Convert a rotation matrix to axis angle representation
*
* \param [in] R Rotation matrix
* \param [in] axis Axis vector
* \param [in] angle Angle in radians
*/
static inline void dcmToAA(double *R, double *axis, double *angle)
{
double d1 = R[7] - R[5];
double d2 = R[2] - R[6];
double d3 = R[3] - R[1];
double norm = sqrt(d1 * d1 + d2 * d2 + d3 * d3);
double x = (R[7] - R[5]) / norm;
double y = (R[2] - R[6]) / norm;
double z = (R[3] - R[1]) / norm;
*angle = acos((R[0] + R[4] + R[8] - 1.0) * 0.5);
axis[0] = x;
axis[1] = y;
axis[2] = z;
}
/**
* \brief Convert axis angle representation to rotation matrix
*
* \param [in] axis Axis Vector
* \param [in] angle Angle (In radians)
* \param [in] R 3x3 Rotation matrix
*/
static inline void aaToDCM(double *axis, double angle, double *R)
{
double ident[9]={1,0,0,0,1,0,0,0,1};
double n[9] = { 0.0, -axis[2], axis[1],
axis[2], 0.0, -axis[0],
-axis[1], axis[0], 0.0
};
double nsq[9];
double c, s;
int i;
//c = 1-cos(angle);
c = cos(angle);
s = sin(angle);
matrixProduct33(n, n, nsq);
for (i = 0; i < 9; i++)
{
const double sni = n[i]*s;
const double cnsqi = nsq[i]*(c);
R[i]=ident[i]+sni+cnsqi;
}
// The below code is the matrix based implemntation of the above
// double nsq[9], sn[9], cnsq[9], tmp[9];
//matrix_scale(3, 3, n, s, sn);
//matrix_scale(3, 3, nsq, (1 - c), cnsq);
//matrix_sum(3, 3, 3, 3, ident, sn, tmp);
//matrix_sum(3, 3, 3, 3, tmp, cnsq, R);
}
/**
* \brief Convert a discrete cosine matrix to quaternion
*
* \param [in] R Rotation Matrix
* \param [in] q Quaternion
*/
static inline void dcmToQuat(double *R, double *q)
{
double n4; // the norm of quaternion multiplied by 4
double tr = R[0] + R[4] + R[8]; // trace of martix
double factor;
if (tr > 0.0)
{
q[1] = R[5] - R[7];
q[2] = R[6] - R[2];
q[3] = R[1] - R[3];
q[0] = tr + 1.0;
n4 = q[0];
}
else
if ((R[0] > R[4]) && (R[0] > R[8]))
{
q[1] = 1.0 + R[0] - R[4] - R[8];
q[2] = R[3] + R[1];
q[3] = R[6] + R[2];
q[0] = R[5] - R[7];
n4 = q[1];
}
else
if (R[4] > R[8])
{
q[1] = R[3] + R[1];
q[2] = 1.0 + R[4] - R[0] - R[8];
q[3] = R[7] + R[5];
q[0] = R[6] - R[2];
n4 = q[2];
}
else
{
q[1] = R[6] + R[2];
q[2] = R[7] + R[5];
q[3] = 1.0 + R[8] - R[0] - R[4];
q[0] = R[1] - R[3];
n4 = q[3];
}
factor = 0.5 / sqrt(n4);
q[0] *= factor;
q[1] *= factor;
q[2] *= factor;
q[3] *= factor;
}
/**
* \brief Convert quaternion to a discrete cosine matrix
*
* \param [in] q Quaternion (w is at first element)
* \param [in] R Rotation Matrix
*
*/
static inline void quatToDCM(double *q, double *R)
{
double sqw = q[0] * q[0];
double sqx = q[1] * q[1];
double sqy = q[2] * q[2];
double sqz = q[3] * q[3];
double tmp1, tmp2;
R[0] = sqx - sqy - sqz + sqw; // since sqw + sqx + sqy + sqz = 1
R[4] = -sqx + sqy - sqz + sqw;
R[8] = -sqx - sqy + sqz + sqw;
tmp1 = q[1] * q[2];
tmp2 = q[3] * q[0];
R[1] = 2.0 * (tmp1 + tmp2);
R[3] = 2.0 * (tmp1 - tmp2);
tmp1 = q[1] * q[3];
tmp2 = q[2] * q[0];
R[2] = 2.0 * (tmp1 - tmp2);
R[6] = 2.0 * (tmp1 + tmp2);
tmp1 = q[2] * q[3];
tmp2 = q[1] * q[0];
R[5] = 2.0 * (tmp1 + tmp2);
R[7] = 2.0 * (tmp1 - tmp2);
}
/**
* @brief Analytical solution to find the eigenvector corresponding to the smallest
* eigenvalue of a 3x3 matrix. As this implements the analytical solution, it's not
* really the most robust way. Whenever possible, this implementation can be replaced
* via a robust numerical scheme.
* @param [in] C The matrix
* @param [in] A The eigenvector corresponding to the lowest eigenvalue
* @author Tolga Birdal
*/
static inline void eigenLowest33(const double C[3][3], double A[3])
{
const double a = C[0][0];
const double b = C[0][1];
const double c = C[0][2];
const double d = C[1][1];
const double e = C[1][2];
const double f = C[2][2];
const double t2 = c*c;
const double t3 = e*e;
const double t4 = b*t2;
const double t5 = c*d*e;
const double t34 = b*t3;
const double t35 = a*c*e;
const double t6 = t4+t5-t34-t35;
const double t7 = 1.0/t6;
const double t8 = a+d+f;
const double t9 = b*b;
const double t23 = a*d;
const double t24 = a*f;
const double t25 = d*f;
const double t10 = t2+t3+t9-t23-t24-t25;
const double t11 = t8*t10*(1.0/6.0);
const double t12 = t8*t8;
const double t20 = t8*t12*(1.0/2.7E1);
const double t21 = b*c*e;
const double t22 = a*d*f*(1.0/2.0);
const double t26 = a*t3*(1.0/2.0);
const double t27 = d*t2*(1.0/2.0);
const double t28 = f*t9*(1.0/2.0);
const double t14 = t9*(1.0/3.0);
const double t15 = t2*(1.0/3.0);
const double t16 = t3*(1.0/3.0);
const double t17 = t12*(1.0/9.0);
const double t30 = a*d*(1.0/3.0);
const double t31 = a*f*(1.0/3.0);
const double t32 = d*f*(1.0/3.0);
const double t18 = t14+t15+t16+t17-t30-t31-t32;
const double t19 = t18*t18;
const double t36 = a*(1.0/3.0);
const double t37 = d*(1.0/3.0);
const double t38 = f*(1.0/3.0);
const double t39 = t8*(t2+t3+t9-t23-t24-t25)*(1.0/6.0);
const double t41 = t18*t19;
const double t43 = e*t2;
const double t60 = b*c*f;
const double t61 = d*e*f;
const double t44 = t43-t60-t61+e*t3;
const double t45 = t7*t44;
const double t57 = sqrt(3.0);
const double t51 = b*c;
const double t52 = d*e;
const double t53 = e*f;
const double t54 = t51+t52+t53;
const double t62 = t11+t20+t21+t22-t26-t27-t28;
const double t63 = t11+t20+t21+t22-t26-t27-t28;
const double t64 = t11+t20+t21+t22-t26-t27-t28;
const double t65 = t11+t20+t21+t22-t26-t27-t28;
const double t66 = t36+t37+t38-t18*1.0/pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t62*t62),1.0/3.0)*(1.0/2.0)+t57*(t18*1.0/pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t64*t64),1.0/3.0)-pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t65*t65),1.0/3.0))*5.0E-1*sqrt(-1.0)-pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t63*t63),1.0/3.0)*(1.0/2.0);
const double t67 = t11+t20+t21+t22-t26-t27-t28;
const double t68 = t11+t20+t21+t22-t26-t27-t28;
const double t69 = t11+t20+t21+t22-t26-t27-t28;
const double t70 = t11+t20+t21+t22-t26-t27-t28;
const double t76 = c*t3;
const double t91 = a*c*f;
const double t92 = b*e*f;
const double t77 = t76-t91-t92+c*t2;
const double t83 = a*c;
const double t84 = b*e;
const double t85 = c*f;
const double t86 = t83+t84+t85;
const double t93 = t11+t20+t21+t22-t26-t27-t28;
const double t94 = t11+t20+t21+t22-t26-t27-t28;
const double t95 = t11+t20+t21+t22-t26-t27-t28;
const double t96 = t11+t20+t21+t22-t26-t27-t28;
const double t97 = t36+t37+t38-t18*1.0/pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t93*t93),1.0/3.0)*(1.0/2.0)+t57*(t18*1.0/pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t95*t95),1.0/3.0)-pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t96*t96),1.0/3.0))*5.0E-1*sqrt(-1.0)-pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t94*t94),1.0/3.0)*(1.0/2.0);
const double t98 = t11+t20+t21+t22-t26-t27-t28;
const double t99 = t11+t20+t21+t22-t26-t27-t28;
const double t100 = t11+t20+t21+t22-t26-t27-t28;
const double t101 = t11+t20+t21+t22-t26-t27-t28;
A[0] = t45-e*t7*(t66*t66)+t7*t54*(t36+t37+t38-t18*1.0/pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t67*t67),1.0/3.0)*(1.0/2.0)+t57*(t18*1.0/pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t69*t69),1.0/3.0)-pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t70*t70),1.0/3.0))*5.0E-1*sqrt(-1.0)-pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t68*t68),1.0/3.0)*(1.0/2.0));
A[1] = -t7*t77+c*t7*(t97*t97)-t7*t86*(t36+t37+t38-t18*1.0/pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t98*t98),1.0/3.0)*(1.0/2.0)+t57*(t18*1.0/pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t100*t100),1.0/3.0)-pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t101*t101),1.0/3.0))*5.0E-1*sqrt(-1.0)-pow(t20+t21+t22-t26-t27-t28+t39+sqrt(-t41+t99*t99),1.0/3.0)*(1.0/2.0));
A[2] = 1.0;
}
} // namespace ppf_match_3d
} // namespace cv
#endif