mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-16 13:57:05 +08:00

optflow: fix test failure MSVS2013: - DenseOpticalFlow_GlobalPatchColliderDCT.ReferenceAccuracy - DenseOpticalFlow_GlobalPatchColliderWHT.ReferenceAccuracy
775 lines
28 KiB
C++
775 lines
28 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "opencv2/core/core_c.h"
|
|
#include "opencv2/core/private.hpp"
|
|
#include "opencv2/flann/miniflann.hpp"
|
|
#include "opencv2/highgui.hpp"
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels_optflow.hpp"
|
|
|
|
/* Disable "from double to float" and "from size_t to int" warnings.
|
|
* Fixing these would make the code look ugly by introducing explicit cast all around.
|
|
* Here these warning are pointless anyway.
|
|
*/
|
|
#ifdef _MSC_VER
|
|
#pragma warning( disable : 4244 4267 4838 )
|
|
#endif
|
|
#ifdef __clang__
|
|
#pragma clang diagnostic ignored "-Wshorten-64-to-32"
|
|
#endif
|
|
|
|
namespace cv
|
|
{
|
|
namespace optflow
|
|
{
|
|
namespace
|
|
{
|
|
|
|
#define PATCH_RADIUS 10
|
|
#define PATCH_RADIUS_DOUBLED 20
|
|
#define SQRT2_INV 0.7071067811865475
|
|
|
|
const int patchRadius = PATCH_RADIUS;
|
|
const int globalIters = 3;
|
|
const int localIters = 500;
|
|
const double thresholdOutliers = 0.98;
|
|
const double thresholdMagnitudeFrac = 0.8;
|
|
const double epsTolerance = 1e-12;
|
|
const unsigned scoreGainPos = 5;
|
|
const unsigned scoreGainNeg = 1;
|
|
const unsigned negSearchKNN = 5;
|
|
const double simulatedAnnealingTemperatureCoef = 200.0;
|
|
const double sigmaGrowthRate = 0.2;
|
|
|
|
RNG rng;
|
|
|
|
struct Magnitude
|
|
{
|
|
float val;
|
|
int i;
|
|
int j;
|
|
|
|
Magnitude( float _val, int _i, int _j ) : val( _val ), i( _i ), j( _j ) {}
|
|
Magnitude() {}
|
|
|
|
bool operator<( const Magnitude &m ) const { return val > m.val; }
|
|
};
|
|
|
|
struct PartitionPredicate1
|
|
{
|
|
Vec< double, GPCPatchDescriptor::nFeatures > coef;
|
|
double rhs;
|
|
|
|
PartitionPredicate1( const Vec< double, GPCPatchDescriptor::nFeatures > &_coef, double _rhs ) : coef( _coef ), rhs( _rhs ) {}
|
|
|
|
bool operator()( const GPCPatchSample &sample ) const
|
|
{
|
|
bool refdir, posdir, negdir;
|
|
sample.getDirections( refdir, posdir, negdir, coef, rhs );
|
|
return refdir == false && ( posdir == false || negdir == true );
|
|
}
|
|
};
|
|
|
|
struct PartitionPredicate2
|
|
{
|
|
Vec< double, GPCPatchDescriptor::nFeatures > coef;
|
|
double rhs;
|
|
|
|
PartitionPredicate2( const Vec< double, GPCPatchDescriptor::nFeatures > &_coef, double _rhs ) : coef( _coef ), rhs( _rhs ) {}
|
|
|
|
bool operator()( const GPCPatchSample &sample ) const
|
|
{
|
|
bool refdir, posdir, negdir;
|
|
sample.getDirections( refdir, posdir, negdir, coef, rhs );
|
|
return refdir != posdir && refdir == negdir;
|
|
}
|
|
};
|
|
|
|
struct CompareWithTolerance
|
|
{
|
|
double val;
|
|
|
|
CompareWithTolerance( double _val ) : val( _val ) {};
|
|
|
|
bool operator()( const double &elem ) const
|
|
{
|
|
const double diff = ( val + elem == 0 ) ? std::abs( val - elem ) : std::abs( ( val - elem ) / ( val + elem ) );
|
|
return diff <= epsTolerance;
|
|
}
|
|
};
|
|
|
|
float normL2Sqr( const Vec2f &v ) { return v[0] * v[0] + v[1] * v[1]; }
|
|
|
|
int normL2Sqr( const Point2i &v ) { return v.x * v.x + v.y * v.y; }
|
|
|
|
bool checkBounds( int i, int j, Size sz )
|
|
{
|
|
return i >= patchRadius && j >= patchRadius && i + patchRadius < sz.height && j + patchRadius < sz.width;
|
|
}
|
|
|
|
void getDCTPatchDescriptor( GPCPatchDescriptor &patchDescr, const Mat *imgCh, int i, int j )
|
|
{
|
|
Rect roi( j - patchRadius, i - patchRadius, 2 * patchRadius, 2 * patchRadius );
|
|
Mat freqDomain;
|
|
dct( imgCh[0]( roi ), freqDomain );
|
|
|
|
double *feature = patchDescr.feature.val;
|
|
feature[0] = freqDomain.at< float >( 0, 0 );
|
|
feature[1] = freqDomain.at< float >( 0, 1 );
|
|
feature[2] = freqDomain.at< float >( 0, 2 );
|
|
feature[3] = freqDomain.at< float >( 0, 3 );
|
|
|
|
feature[4] = freqDomain.at< float >( 1, 0 );
|
|
feature[5] = freqDomain.at< float >( 1, 1 );
|
|
feature[6] = freqDomain.at< float >( 1, 2 );
|
|
feature[7] = freqDomain.at< float >( 1, 3 );
|
|
|
|
feature[8] = freqDomain.at< float >( 2, 0 );
|
|
feature[9] = freqDomain.at< float >( 2, 1 );
|
|
feature[10] = freqDomain.at< float >( 2, 2 );
|
|
feature[11] = freqDomain.at< float >( 2, 3 );
|
|
|
|
feature[12] = freqDomain.at< float >( 3, 0 );
|
|
feature[13] = freqDomain.at< float >( 3, 1 );
|
|
feature[14] = freqDomain.at< float >( 3, 2 );
|
|
feature[15] = freqDomain.at< float >( 3, 3 );
|
|
|
|
feature[16] = cv::sum( imgCh[1]( roi ) )[0] / ( 2 * patchRadius );
|
|
feature[17] = cv::sum( imgCh[2]( roi ) )[0] / ( 2 * patchRadius );
|
|
}
|
|
|
|
double sumInt( const Mat &integ, int i, int j, int h, int w )
|
|
{
|
|
return integ.at< double >( i + h, j + w ) - integ.at< double >( i + h, j ) - integ.at< double >( i, j + w ) + integ.at< double >( i, j );
|
|
}
|
|
|
|
void getWHTPatchDescriptor( GPCPatchDescriptor &patchDescr, const Mat *imgCh, int i, int j )
|
|
{
|
|
i -= patchRadius;
|
|
j -= patchRadius;
|
|
const int k = 2 * patchRadius;
|
|
const double s = sumInt( imgCh[0], i, j, k, k );
|
|
double *feature = patchDescr.feature.val;
|
|
|
|
feature[0] = s;
|
|
feature[1] = s - 2 * sumInt( imgCh[0], i, j + k / 2, k, k / 2 );
|
|
feature[2] = s - 2 * sumInt( imgCh[0], i, j + k / 4, k, k / 2 );
|
|
feature[3] = s - 2 * sumInt( imgCh[0], i, j + k / 4, k, k / 4 ) - 2 * sumInt( imgCh[0], i, j + 3 * k / 4, k, k / 4 );
|
|
|
|
feature[4] = s - 2 * sumInt( imgCh[0], i + k / 2, j, k / 2, k );
|
|
feature[5] = s - 2 * sumInt( imgCh[0], i, j + k / 2, k / 2, k / 2 ) - 2 * sumInt( imgCh[0], i + k / 2, j, k / 2, k / 2 );
|
|
feature[6] = s - 2 * sumInt( imgCh[0], i, j + k / 4, k / 2, k / 2 ) - 2 * sumInt( imgCh[0], i + k / 2, j, k / 2, k / 4 ) -
|
|
2 * sumInt( imgCh[0], i + k / 2, j + 3 * k / 4, k / 2, k / 4 );
|
|
feature[7] = s - 2 * sumInt( imgCh[0], i, j + k / 4, k / 2, k / 4 ) - 2 * sumInt( imgCh[0], i, j + 3 * k / 4, k / 2, k / 4 ) -
|
|
2 * sumInt( imgCh[0], i + k / 2, j, k / 2, k / 4 ) - 2 * sumInt( imgCh[0], i + k / 2, j + k / 2, k / 2, k / 4 );
|
|
|
|
feature[8] = s - 2 * sumInt( imgCh[0], i + k / 4, j, k / 2, k );
|
|
feature[9] = s - 2 * sumInt( imgCh[0], i + k / 4, j, k / 2, k / 2 ) - 2 * sumInt( imgCh[0], i, j + k / 2, k / 4, k / 2 ) -
|
|
2 * sumInt( imgCh[0], i + 3 * k / 4, j + k / 2, k / 4, k / 2 );
|
|
feature[10] = s - 2 * sumInt( imgCh[0], i + k / 4, j, k / 2, k / 4 ) - 2 * sumInt( imgCh[0], i + k / 4, j + 3 * k / 4, k / 2, k / 4 ) -
|
|
2 * sumInt( imgCh[0], i, j + k / 4, k / 4, k / 2 ) - 2 * sumInt( imgCh[0], i + 3 * k / 4, j + k / 4, k / 4, k / 2 );
|
|
feature[11] = s - 2 * sumInt( imgCh[0], i, j + k / 4, k / 4, k / 4 ) - 2 * sumInt( imgCh[0], i, j + 3 * k / 4, k / 4, k / 4 ) -
|
|
2 * sumInt( imgCh[0], i + k / 4, j, k / 2, k / 4 ) - 2 * sumInt( imgCh[0], i + k / 4, j + k / 2, k / 2, k / 4 ) -
|
|
2 * sumInt( imgCh[0], i + 3 * k / 4, j + k / 4, k / 4, k / 4 ) -
|
|
2 * sumInt( imgCh[0], i + 3 * k / 4, j + 3 * k / 4, k / 4, k / 4 );
|
|
|
|
feature[12] = s - 2 * sumInt( imgCh[0], i + k / 4, j, k / 4, k ) - 2 * sumInt( imgCh[0], i + 3 * k / 4, j, k / 4, k );
|
|
feature[13] = s - 2 * sumInt( imgCh[0], i + k / 4, j, k / 4, k / 2 ) - 2 * sumInt( imgCh[0], i + 3 * k / 4, j, k / 4, k / 2 ) -
|
|
2 * sumInt( imgCh[0], i, j + k / 2, k / 4, k / 2 ) - 2 * sumInt( imgCh[0], i + k / 2, j + k / 2, k / 4, k / 2 );
|
|
feature[14] = s - 2 * sumInt( imgCh[0], i + k / 4, j, k / 4, k / 4 ) - 2 * sumInt( imgCh[0], i + 3 * k / 4, j, k / 4, k / 4 ) -
|
|
2 * sumInt( imgCh[0], i, j + k / 4, k / 4, k / 2 ) - 2 * sumInt( imgCh[0], i + k / 2, j + k / 4, k / 4, k / 2 ) -
|
|
2 * sumInt( imgCh[0], i + k / 4, j + 3 * k / 4, k / 4, k / 4 ) -
|
|
2 * sumInt( imgCh[0], i + 3 * k / 4, j + 3 * k / 4, k / 4, k / 4 );
|
|
feature[15] = s - 2 * sumInt( imgCh[0], i, j + k / 4, k / 4, k / 4 ) - 2 * sumInt( imgCh[0], i, j + 3 * k / 4, k / 4, k / 4 ) -
|
|
2 * sumInt( imgCh[0], i + k / 4, j, k / 4, k / 4 ) - 2 * sumInt( imgCh[0], i + k / 4, j + k / 2, k / 4, k / 4 ) -
|
|
2 * sumInt( imgCh[0], i + k / 2, j + k / 4, k / 4, k / 4 ) -
|
|
2 * sumInt( imgCh[0], i + k / 2, j + 3 * k / 4, k / 4, k / 4 ) - 2 * sumInt( imgCh[0], i + 3 * k / 4, j, k / 4, k / 4 ) -
|
|
2 * sumInt( imgCh[0], i + 3 * k / 4, j + k / 2, k / 4, k / 4 );
|
|
|
|
feature[16] = sumInt( imgCh[1], i, j, k, k );
|
|
feature[17] = sumInt( imgCh[2], i, j, k, k );
|
|
|
|
patchDescr.feature /= patchRadius;
|
|
}
|
|
|
|
class ParallelDCTFiller : public ParallelLoopBody
|
|
{
|
|
private:
|
|
const Size sz;
|
|
const Mat *imgCh;
|
|
std::vector< GPCPatchDescriptor > *descr;
|
|
|
|
ParallelDCTFiller &operator=( const ParallelDCTFiller & );
|
|
|
|
public:
|
|
ParallelDCTFiller( const Size &_sz, const Mat *_imgCh, std::vector< GPCPatchDescriptor > *_descr )
|
|
: sz( _sz ), imgCh( _imgCh ), descr( _descr ){};
|
|
|
|
void operator()( const Range &range ) const
|
|
{
|
|
for ( int i = range.start; i < range.end; ++i )
|
|
{
|
|
int x, y;
|
|
GPCDetails::getCoordinatesFromIndex( i, sz, x, y );
|
|
getDCTPatchDescriptor( descr->at( i ), imgCh, y, x );
|
|
}
|
|
}
|
|
};
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
bool ocl_getAllDCTDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr )
|
|
{
|
|
const Size sz = imgCh[0].size();
|
|
ocl::Kernel kernel( "getPatchDescriptor", ocl::optflow::sparse_matching_gpc_oclsrc,
|
|
format( "-DPATCH_RADIUS_DOUBLED=%d -DCV_PI=%f -DSQRT2_INV=%f", PATCH_RADIUS_DOUBLED, CV_PI, SQRT2_INV ) );
|
|
size_t globSize[] = {sz.height - 2 * patchRadius, sz.width - 2 * patchRadius};
|
|
UMat out( globSize[0] * globSize[1], GPCPatchDescriptor::nFeatures, CV_64F );
|
|
if (
|
|
kernel
|
|
.args( cv::ocl::KernelArg::ReadOnlyNoSize( imgCh[0].getUMat( ACCESS_READ ) ),
|
|
cv::ocl::KernelArg::ReadOnlyNoSize( imgCh[1].getUMat( ACCESS_READ ) ),
|
|
cv::ocl::KernelArg::ReadOnlyNoSize( imgCh[2].getUMat( ACCESS_READ ) ),
|
|
cv::ocl::KernelArg::WriteOnlyNoSize( out ),
|
|
(int)globSize[0], (int)globSize[1], (int)patchRadius )
|
|
.run( 2, globSize, 0, true ) == false )
|
|
return false;
|
|
Mat cpuOut = out.getMat( 0 );
|
|
for ( int i = 0; i + 2 * patchRadius < sz.height; ++i )
|
|
for ( int j = 0; j + 2 * patchRadius < sz.width; ++j )
|
|
descr.push_back( *cpuOut.ptr< GPCPatchDescriptor >( i * globSize[1] + j ) );
|
|
return true;
|
|
}
|
|
|
|
#endif
|
|
|
|
void getAllDCTDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams &mp )
|
|
{
|
|
const Size sz = imgCh[0].size();
|
|
descr.reserve( ( sz.height - 2 * patchRadius ) * ( sz.width - 2 * patchRadius ) );
|
|
|
|
(void)mp; // Fix unused parameter warning in case OpenCL is not available
|
|
CV_OCL_RUN( mp.useOpenCL, ocl_getAllDCTDescriptorsForImage( imgCh, descr ) )
|
|
|
|
descr.resize( ( sz.height - 2 * patchRadius ) * ( sz.width - 2 * patchRadius ) );
|
|
parallel_for_( Range( 0, descr.size() ), ParallelDCTFiller( sz, imgCh, &descr ) );
|
|
}
|
|
|
|
class ParallelWHTFiller : public ParallelLoopBody
|
|
{
|
|
private:
|
|
const Size sz;
|
|
const Mat *imgChInt;
|
|
std::vector< GPCPatchDescriptor > *descr;
|
|
|
|
ParallelWHTFiller &operator=( const ParallelWHTFiller & );
|
|
|
|
public:
|
|
ParallelWHTFiller( const Size &_sz, const Mat *_imgChInt, std::vector< GPCPatchDescriptor > *_descr )
|
|
: sz( _sz ), imgChInt( _imgChInt ), descr( _descr ){};
|
|
|
|
void operator()( const Range &range ) const
|
|
{
|
|
for ( int i = range.start; i < range.end; ++i )
|
|
{
|
|
int x, y;
|
|
GPCDetails::getCoordinatesFromIndex( i, sz, x, y );
|
|
getWHTPatchDescriptor( descr->at( i ), imgChInt, y, x );
|
|
}
|
|
}
|
|
};
|
|
|
|
void getAllWHTDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams & )
|
|
{
|
|
const Size sz = imgCh[0].size();
|
|
descr.resize( ( sz.height - 2 * patchRadius ) * ( sz.width - 2 * patchRadius ) );
|
|
|
|
Mat imgChInt[3];
|
|
integral( imgCh[0], imgChInt[0], CV_64F );
|
|
integral( imgCh[1], imgChInt[1], CV_64F );
|
|
integral( imgCh[2], imgChInt[2], CV_64F );
|
|
|
|
parallel_for_( Range( 0, descr.size() ), ParallelWHTFiller( sz, imgChInt, &descr ) );
|
|
}
|
|
|
|
void buildIndex( OutputArray featuresOut, flann::Index &index, const Mat *imgCh,
|
|
void ( *getAllDescrFn )( const Mat *, std::vector< GPCPatchDescriptor > &, const GPCMatchingParams & ) )
|
|
{
|
|
std::vector< GPCPatchDescriptor > descriptors;
|
|
getAllDescrFn( imgCh, descriptors, GPCMatchingParams() );
|
|
|
|
featuresOut.create( descriptors.size(), GPCPatchDescriptor::nFeatures, CV_32F );
|
|
Mat features = featuresOut.getMat();
|
|
|
|
for ( size_t i = 0; i < descriptors.size(); ++i )
|
|
*features.ptr< Vec< float, GPCPatchDescriptor::nFeatures > >( i ) = descriptors[i].feature;
|
|
|
|
cv::flann::KDTreeIndexParams indexParams;
|
|
index.build( features, indexParams, cvflann::FLANN_DIST_L2 );
|
|
}
|
|
|
|
void getTriplet( const Magnitude &mag, const Mat >, const Mat *fromCh, const Mat *toCh, GPCSamplesVector &samples, flann::Index &index,
|
|
void ( *getDescFn )( GPCPatchDescriptor &, const Mat *, int, int ) )
|
|
{
|
|
const Size sz = gt.size();
|
|
const int i0 = mag.i;
|
|
const int j0 = mag.j;
|
|
const int i1 = i0 + cvRound( gt.at< Vec2f >( i0, j0 )[1] );
|
|
const int j1 = j0 + cvRound( gt.at< Vec2f >( i0, j0 )[0] );
|
|
if ( checkBounds( i1, j1, sz ) )
|
|
{
|
|
GPCPatchSample ps;
|
|
getDescFn( ps.ref, fromCh, i0, j0 );
|
|
getDescFn( ps.pos, toCh, i1, j1 );
|
|
ps.neg.markAsSeparated();
|
|
|
|
Matx< float, 1, GPCPatchDescriptor::nFeatures > ref32;
|
|
Matx< int, 1, negSearchKNN > indices;
|
|
int maxDist = 0;
|
|
|
|
for ( unsigned i = 0; i < GPCPatchDescriptor::nFeatures; ++i )
|
|
ref32( 0, i ) = ps.ref.feature[i];
|
|
|
|
index.knnSearch( ref32, indices, noArray(), negSearchKNN );
|
|
|
|
for ( unsigned i = 0; i < negSearchKNN; ++i )
|
|
{
|
|
int i2, j2;
|
|
GPCDetails::getCoordinatesFromIndex( indices( 0, i ), sz, j2, i2 );
|
|
const int dist = ( i2 - i1 ) * ( i2 - i1 ) + ( j2 - j1 ) * ( j2 - j1 );
|
|
if ( maxDist < dist )
|
|
{
|
|
maxDist = dist;
|
|
getDescFn( ps.neg, toCh, i2, j2 );
|
|
}
|
|
}
|
|
|
|
samples.push_back( ps );
|
|
}
|
|
}
|
|
|
|
void getTrainingSamples( const Mat &from, const Mat &to, const Mat >, GPCSamplesVector &samples, const int type )
|
|
{
|
|
const Size sz = gt.size();
|
|
std::vector< Magnitude > mag;
|
|
|
|
for ( int i = patchRadius; i + patchRadius < sz.height; ++i )
|
|
for ( int j = patchRadius; j + patchRadius < sz.width; ++j )
|
|
mag.push_back( Magnitude( normL2Sqr( gt.at< Vec2f >( i, j ) ), i, j ) );
|
|
|
|
size_t n = size_t( mag.size() * thresholdMagnitudeFrac ); // As suggested in the paper, we discard part of the training samples
|
|
// with a small displacement and train to better distinguish hard pairs.
|
|
std::nth_element( mag.begin(), mag.begin() + n, mag.end() );
|
|
mag.resize( n );
|
|
std::random_shuffle( mag.begin(), mag.end() );
|
|
n /= patchRadius;
|
|
mag.resize( n );
|
|
|
|
if ( type == GPC_DESCRIPTOR_DCT )
|
|
{
|
|
Mat fromCh[3], toCh[3];
|
|
split( from, fromCh );
|
|
split( to, toCh );
|
|
|
|
Mat allDescriptors;
|
|
flann::Index index;
|
|
buildIndex( allDescriptors, index, toCh, getAllDCTDescriptorsForImage );
|
|
|
|
for ( size_t k = 0; k < n; ++k )
|
|
getTriplet( mag[k], gt, fromCh, toCh, samples, index, getDCTPatchDescriptor );
|
|
}
|
|
else if ( type == GPC_DESCRIPTOR_WHT )
|
|
{
|
|
Mat fromCh[3], toCh[3], fromChInt[3], toChInt[3];
|
|
split( from, fromCh );
|
|
split( to, toCh );
|
|
integral( fromCh[0], fromChInt[0], CV_64F );
|
|
integral( fromCh[1], fromChInt[1], CV_64F );
|
|
integral( fromCh[2], fromChInt[2], CV_64F );
|
|
integral( toCh[0], toChInt[0], CV_64F );
|
|
integral( toCh[1], toChInt[1], CV_64F );
|
|
integral( toCh[2], toChInt[2], CV_64F );
|
|
|
|
Mat allDescriptors;
|
|
flann::Index index;
|
|
buildIndex( allDescriptors, index, toCh, getAllWHTDescriptorsForImage );
|
|
|
|
for ( size_t k = 0; k < n; ++k )
|
|
getTriplet( mag[k], gt, fromChInt, toChInt, samples, index, getWHTPatchDescriptor );
|
|
}
|
|
else
|
|
CV_Error( CV_StsBadArg, "Unknown descriptor type" );
|
|
}
|
|
|
|
/* Sample random number from Cauchy distribution. */
|
|
double getRandomCauchyScalar()
|
|
{
|
|
return tan( rng.uniform( -1.54, 1.54 ) ); // I intentionally used the value slightly less than PI/2 to enforce strictly
|
|
// zero probability for large numbers. Resulting PDF for Cauchy has
|
|
// truncated "tails".
|
|
}
|
|
|
|
/* Sample random vector from Cauchy distribution (pointwise, i.e. vector whose components are independent random
|
|
* variables from Cauchy distribution) */
|
|
void getRandomCauchyVector( Vec< double, GPCPatchDescriptor::nFeatures > &v )
|
|
{
|
|
for ( unsigned i = 0; i < GPCPatchDescriptor::nFeatures; ++i )
|
|
v[i] = getRandomCauchyScalar();
|
|
}
|
|
|
|
double getRobustMedian( double m ) { return m < 0 ? m * ( 1.0 + epsTolerance ) : m * ( 1.0 - epsTolerance ); }
|
|
}
|
|
|
|
double GPCPatchDescriptor::dot( const Vec< double, nFeatures > &coef ) const
|
|
{
|
|
#if CV_SIMD128_64F
|
|
v_float64x2 sum = v_setzero_f64();
|
|
for ( unsigned i = 0; i < nFeatures; i += 2 )
|
|
{
|
|
v_float64x2 x = v_load( &feature.val[i] );
|
|
v_float64x2 y = v_load( &coef.val[i] );
|
|
sum = v_muladd( x, y, sum );
|
|
}
|
|
#if CV_SSE2
|
|
__m128d sumrev = _mm_shuffle_pd( sum.val, sum.val, _MM_SHUFFLE2( 0, 1 ) );
|
|
return _mm_cvtsd_f64( _mm_add_pd( sum.val, sumrev ) );
|
|
#else
|
|
double CV_DECL_ALIGNED( 16 ) buf[2];
|
|
v_store_aligned( buf, sum );
|
|
return OPENCV_HAL_ADD( buf[0], buf[1] );
|
|
#endif
|
|
|
|
#else
|
|
return feature.dot( coef );
|
|
#endif
|
|
}
|
|
|
|
void GPCPatchSample::getDirections( bool &refdir, bool &posdir, bool &negdir, const Vec< double, GPCPatchDescriptor::nFeatures > &coef, double rhs ) const
|
|
{
|
|
refdir = ( ref.dot( coef ) < rhs );
|
|
posdir = pos.isSeparated() ? ( !refdir ) : ( pos.dot( coef ) < rhs );
|
|
negdir = neg.isSeparated() ? ( !refdir ) : ( neg.dot( coef ) < rhs );
|
|
}
|
|
|
|
void GPCDetails::getAllDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams &mp,
|
|
int type )
|
|
{
|
|
if ( type == GPC_DESCRIPTOR_DCT )
|
|
getAllDCTDescriptorsForImage( imgCh, descr, mp );
|
|
else if ( type == GPC_DESCRIPTOR_WHT )
|
|
getAllWHTDescriptorsForImage( imgCh, descr, mp );
|
|
else
|
|
CV_Error( CV_StsBadArg, "Unknown descriptor type" );
|
|
}
|
|
|
|
void GPCDetails::getCoordinatesFromIndex( size_t index, Size sz, int &x, int &y )
|
|
{
|
|
const size_t stride = sz.width - patchRadius * 2;
|
|
y = int( index / stride );
|
|
x = int( index - y * stride + patchRadius );
|
|
y += patchRadius;
|
|
}
|
|
|
|
bool GPCTree::trainNode( size_t nodeId, SIter begin, SIter end, unsigned depth )
|
|
{
|
|
const int nSamples = (int)std::distance( begin, end );
|
|
|
|
if ( nSamples < params.minNumberOfSamples || depth >= params.maxTreeDepth )
|
|
return false;
|
|
|
|
if ( nodeId >= nodes.size() )
|
|
nodes.resize( nodeId + 1 );
|
|
|
|
Node &node = nodes[nodeId];
|
|
|
|
// Select the best hyperplane
|
|
unsigned globalBestScore = 0;
|
|
std::vector< double > values;
|
|
values.reserve( nSamples * 2 );
|
|
|
|
for ( int j = 0; j < globalIters; ++j )
|
|
{ // Global search step
|
|
Vec< double, GPCPatchDescriptor::nFeatures > coef;
|
|
unsigned localBestScore = 0;
|
|
getRandomCauchyVector( coef );
|
|
|
|
for ( int i = 0; i < localIters; ++i )
|
|
{ // Local search step
|
|
double randomModification = getRandomCauchyScalar() * ( 1.0 + sigmaGrowthRate * int( i / GPCPatchDescriptor::nFeatures ) );
|
|
const int pos = i % GPCPatchDescriptor::nFeatures;
|
|
std::swap( coef[pos], randomModification );
|
|
values.clear();
|
|
|
|
for ( SIter iter = begin; iter != end; ++iter )
|
|
values.push_back( iter->ref.dot( coef ) );
|
|
|
|
std::nth_element( values.begin(), values.begin() + nSamples / 2, values.end() );
|
|
double median = values[nSamples / 2];
|
|
|
|
// Skip obviously malformed division. This may happen in case there are a large number of equal samples.
|
|
// Most likely this won't happen with samples collected from a good dataset.
|
|
// Happens in case dataset contains plain (or close to plain) images.
|
|
if ( std::count_if( values.begin(), values.end(), CompareWithTolerance( median ) ) > std::max( 1, nSamples / 4 ) )
|
|
continue;
|
|
|
|
median = getRobustMedian( median );
|
|
|
|
unsigned score = 0;
|
|
for ( SIter iter = begin; iter != end; ++iter )
|
|
{
|
|
bool refdir, posdir, negdir;
|
|
iter->getDirections( refdir, posdir, negdir, coef, median );
|
|
if ( refdir == posdir )
|
|
score += scoreGainPos;
|
|
if ( refdir != negdir )
|
|
score += scoreGainNeg;
|
|
}
|
|
|
|
if ( score > localBestScore )
|
|
localBestScore = score;
|
|
else
|
|
{
|
|
const double beta = simulatedAnnealingTemperatureCoef * std::sqrt( i ) / ( nSamples * ( scoreGainPos + scoreGainNeg ) );
|
|
if ( rng.uniform( 0.0, 1.0 ) > std::exp( -beta * ( localBestScore - score) ) )
|
|
coef[pos] = randomModification;
|
|
}
|
|
|
|
if ( score > globalBestScore )
|
|
{
|
|
globalBestScore = score;
|
|
node.coef = coef;
|
|
node.rhs = median;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( globalBestScore == 0 )
|
|
return false;
|
|
|
|
if ( params.printProgress )
|
|
{
|
|
const int maxScore = nSamples * ( scoreGainPos + scoreGainNeg );
|
|
const double correctRatio = double( globalBestScore ) / maxScore;
|
|
printf( "[%u] Correct %.2f (%u/%d)\nWeights:", depth, correctRatio, globalBestScore, maxScore );
|
|
for ( unsigned k = 0; k < GPCPatchDescriptor::nFeatures; ++k )
|
|
printf( " %.3f", node.coef[k] );
|
|
printf( "\n" );
|
|
}
|
|
|
|
for ( SIter iter = begin; iter != end; ++iter )
|
|
{
|
|
bool refdir, posdir, negdir;
|
|
iter->getDirections( refdir, posdir, negdir, node.coef, node.rhs );
|
|
// We shouldn't account for positive sample in the scoring in case it was separated before. So mark it as separated.
|
|
// After all, we can't bring back samples which were separated from reference on early levels.
|
|
if ( refdir != posdir )
|
|
iter->pos.markAsSeparated();
|
|
// The same for negative sample.
|
|
if ( refdir != negdir )
|
|
iter->neg.markAsSeparated();
|
|
// If both positive and negative were separated before then such triplet doesn't make sense on deeper levels. We discard it.
|
|
}
|
|
|
|
// Partition vector with samples according to the hyperplane in QuickSort-like manner.
|
|
// Unlike QuickSort, we need to partition it into 3 parts (left subtree samples; undefined samples; right subtree
|
|
// samples), so we call it two times.
|
|
SIter leftEnd = std::partition( begin, end, PartitionPredicate1( node.coef, node.rhs ) ); // Separate left subtree samples from others.
|
|
SIter rightBegin =
|
|
std::partition( leftEnd, end, PartitionPredicate2( node.coef, node.rhs ) ); // Separate undefined samples from right subtree samples.
|
|
|
|
node.left = ( trainNode( nodeId * 2 + 1, begin, leftEnd, depth + 1 ) ) ? unsigned( nodeId * 2 + 1 ) : 0;
|
|
node.right = ( trainNode( nodeId * 2 + 2, rightBegin, end, depth + 1 ) ) ? unsigned( nodeId * 2 + 2 ) : 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
void GPCTree::train( GPCTrainingSamples &samples, const GPCTrainingParams _params )
|
|
{
|
|
if ( _params.descriptorType != samples.type() )
|
|
CV_Error( CV_StsBadArg, "Descriptor type mismatch! Check that samples are collected with the same descriptor type." );
|
|
nodes.clear();
|
|
nodes.reserve( samples.size() * 2 - 1 ); // set upper bound for the possible number of nodes so all subsequent resize() will be no-op
|
|
params = _params;
|
|
GPCSamplesVector &sv = samples;
|
|
trainNode( 0, sv.begin(), sv.end(), 0 );
|
|
}
|
|
|
|
void GPCTree::write( FileStorage &fs ) const
|
|
{
|
|
if ( nodes.empty() )
|
|
CV_Error( CV_StsBadArg, "Tree have not been trained" );
|
|
fs << "nodes" << nodes;
|
|
fs << "dtype" << (int)params.descriptorType;
|
|
}
|
|
|
|
void GPCTree::read( const FileNode &fn )
|
|
{
|
|
fn["nodes"] >> nodes;
|
|
fn["dtype"] >> (int &)params.descriptorType;
|
|
}
|
|
|
|
unsigned GPCTree::findLeafForPatch( const GPCPatchDescriptor &descr ) const
|
|
{
|
|
unsigned id = 0, prevId;
|
|
do
|
|
{
|
|
prevId = id;
|
|
if ( descr.dot( nodes[id].coef ) < nodes[id].rhs )
|
|
id = nodes[id].right;
|
|
else
|
|
id = nodes[id].left;
|
|
} while ( id );
|
|
return prevId;
|
|
}
|
|
|
|
Ptr< GPCTrainingSamples > GPCTrainingSamples::create( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo,
|
|
const std::vector< String > >, int _descriptorType )
|
|
{
|
|
CV_Assert( imagesFrom.size() == imagesTo.size() );
|
|
CV_Assert( imagesFrom.size() == gt.size() );
|
|
|
|
Ptr< GPCTrainingSamples > ts = makePtr< GPCTrainingSamples >();
|
|
|
|
ts->descriptorType = _descriptorType;
|
|
|
|
for ( size_t i = 0; i < imagesFrom.size(); ++i )
|
|
{
|
|
Mat from = imread( imagesFrom[i] );
|
|
Mat to = imread( imagesTo[i] );
|
|
Mat gtFlow = readOpticalFlow( gt[i] );
|
|
|
|
CV_Assert( from.size == to.size );
|
|
CV_Assert( from.size == gtFlow.size );
|
|
CV_Assert( from.channels() == 3 );
|
|
CV_Assert( to.channels() == 3 );
|
|
|
|
from.convertTo( from, CV_32FC3 );
|
|
to.convertTo( to, CV_32FC3 );
|
|
cvtColor( from, from, COLOR_BGR2YCrCb );
|
|
cvtColor( to, to, COLOR_BGR2YCrCb );
|
|
|
|
getTrainingSamples( from, to, gtFlow, ts->samples, ts->descriptorType );
|
|
}
|
|
|
|
return ts;
|
|
}
|
|
|
|
Ptr< GPCTrainingSamples > GPCTrainingSamples::create( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo,
|
|
InputArrayOfArrays gt, int _descriptorType )
|
|
{
|
|
CV_Assert( imagesFrom.total() == imagesTo.total() );
|
|
CV_Assert( imagesFrom.total() == gt.total() );
|
|
|
|
Ptr< GPCTrainingSamples > ts = makePtr< GPCTrainingSamples >();
|
|
|
|
ts->descriptorType = _descriptorType;
|
|
|
|
for ( size_t i = 0; i < imagesFrom.total(); ++i )
|
|
{
|
|
Mat from = imagesFrom.getMat( static_cast<int>( i ) );
|
|
Mat to = imagesTo.getMat( static_cast<int>( i ) );
|
|
Mat gtFlow = gt.getMat( static_cast<int>( i ) );
|
|
|
|
CV_Assert( from.size == to.size );
|
|
CV_Assert( from.size == gtFlow.size );
|
|
CV_Assert( from.channels() == 3 );
|
|
CV_Assert( to.channels() == 3 );
|
|
|
|
from.convertTo( from, CV_32FC3 );
|
|
to.convertTo( to, CV_32FC3 );
|
|
cvtColor( from, from, COLOR_BGR2YCrCb );
|
|
cvtColor( to, to, COLOR_BGR2YCrCb );
|
|
|
|
getTrainingSamples( from, to, gtFlow, ts->samples, ts->descriptorType );
|
|
}
|
|
|
|
return ts;
|
|
}
|
|
|
|
void GPCDetails::dropOutliers( std::vector< std::pair< Point2i, Point2i > > &corr )
|
|
{
|
|
std::vector< float > mag( corr.size() );
|
|
|
|
for ( size_t i = 0; i < corr.size(); ++i )
|
|
mag[i] = normL2Sqr( corr[i].first - corr[i].second );
|
|
|
|
const size_t threshold = size_t( mag.size() * thresholdOutliers );
|
|
std::nth_element( mag.begin(), mag.begin() + threshold, mag.end() );
|
|
const float percentile = mag[threshold];
|
|
size_t i = 0, j = 0;
|
|
|
|
while ( i < corr.size() )
|
|
{
|
|
if ( normL2Sqr( corr[i].first - corr[i].second ) <= percentile )
|
|
{
|
|
corr[j] = corr[i];
|
|
++j;
|
|
}
|
|
++i;
|
|
}
|
|
|
|
corr.resize( j );
|
|
}
|
|
|
|
} // namespace optflow
|
|
|
|
void write( FileStorage &fs, const String &name, const optflow::GPCTree::Node &node )
|
|
{
|
|
cv::internal::WriteStructContext ws( fs, name, CV_NODE_SEQ + CV_NODE_FLOW );
|
|
for ( unsigned i = 0; i < optflow::GPCPatchDescriptor::nFeatures; ++i )
|
|
write( fs, node.coef[i] );
|
|
write( fs, node.rhs );
|
|
write( fs, (int)node.left );
|
|
write( fs, (int)node.right );
|
|
}
|
|
|
|
void read( const FileNode &fn, optflow::GPCTree::Node &node, optflow::GPCTree::Node )
|
|
{
|
|
FileNodeIterator it = fn.begin();
|
|
for ( unsigned i = 0; i < optflow::GPCPatchDescriptor::nFeatures; ++i )
|
|
it >> node.coef[i];
|
|
it >> node.rhs >> (int &)node.left >> (int &)node.right;
|
|
}
|
|
|
|
} // namespace cv
|