1
0
mirror of https://github.com/opencv/opencv_contrib.git synced 2025-10-17 15:26:00 +08:00
Files
opencv_contrib/modules/fastcv/test/test_warp.cpp
2025-06-17 15:38:34 +03:00

212 lines
6.8 KiB
C++

/*
* Copyright (c) 2024-2025 Qualcomm Innovation Center, Inc. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*/
#include "test_precomp.hpp"
namespace opencv_test { namespace {
static void getInvertMatrix(Mat& src, Size dstSize, Mat& M)
{
RNG& rng = cv::theRNG();
Point2f s[4], d[4];
s[0] = Point2f(0,0);
d[0] = Point2f(0,0);
s[1] = Point2f(src.cols-1.f,0);
d[1] = Point2f(dstSize.width-1.f,0);
s[2] = Point2f(src.cols-1.f,src.rows-1.f);
d[2] = Point2f(dstSize.width-1.f,dstSize.height-1.f);
s[3] = Point2f(0,src.rows-1.f);
d[3] = Point2f(0,dstSize.height-1.f);
float buffer[16];
Mat tmp( 1, 16, CV_32FC1, buffer );
rng.fill( tmp, 1, Scalar::all(0.), Scalar::all(0.1) );
for(int i = 0; i < 4; i++ )
{
s[i].x += buffer[i*4]*src.cols/2;
s[i].y += buffer[i*4+1]*src.rows/2;
d[i].x += buffer[i*4+2]*dstSize.width/2;
d[i].y += buffer[i*4+3]*dstSize.height/2;
}
cv::getPerspectiveTransform( s, d ).convertTo( M, M.depth() );
// Invert the perspective matrix
invert(M,M);
}
static cv::Mat getInverseAffine(const cv::Mat& affine)
{
// Extract the 2x2 part
cv::Mat rotationScaling = affine(cv::Rect(0, 0, 2, 2));
// Invert the 2x2 part
cv::Mat inverseRotationScaling;
cv::invert(rotationScaling, inverseRotationScaling);
// Extract the translation part
cv::Mat translation = affine(cv::Rect(2, 0, 1, 2));
// Compute the new translation
cv::Mat inverseTranslation = -inverseRotationScaling * translation;
// Construct the inverse affine matrix
cv::Mat inverseAffine = cv::Mat::zeros(2, 3, CV_32F);
inverseRotationScaling.copyTo(inverseAffine(cv::Rect(0, 0, 2, 2)));
inverseTranslation.copyTo(inverseAffine(cv::Rect(2, 0, 1, 2)));
return inverseAffine;
}
typedef testing::TestWithParam<cv::Size> WarpPerspective2Plane;
TEST_P(WarpPerspective2Plane, accuracy)
{
cv::Size dstSize = GetParam();
cv::Mat src = imread(cvtest::findDataFile("cv/shared/baboon.png"), cv::IMREAD_GRAYSCALE);
EXPECT_FALSE(src.empty());
cv::Mat dst1, dst2, matrix, ref1, ref2;
matrix.create(3, 3, CV_32FC1);
getInvertMatrix(src, dstSize, matrix);
cv::fastcv::warpPerspective2Plane(src, src, dst1, dst2, matrix, dstSize);
cv::warpPerspective(src, ref1, matrix, dstSize, (cv::INTER_LINEAR | cv::WARP_INVERSE_MAP),cv::BORDER_CONSTANT,Scalar(0));
cv::warpPerspective(src, ref2, matrix, dstSize, (cv::INTER_LINEAR | cv::WARP_INVERSE_MAP),cv::BORDER_CONSTANT,Scalar(0));
cv::Mat difference1, difference2, mask1, mask2;
cv::absdiff(dst1, ref1, difference1);
cv::absdiff(dst2, ref2, difference2);
// There are 1 or 2 difference in pixel value because algorithm is different, ignore those difference
cv::threshold(difference1, mask1, 5, 255, cv::THRESH_BINARY);
cv::threshold(difference2, mask2, 5, 255, cv::THRESH_BINARY);
int num_diff_pixels_1 = cv::countNonZero(mask1);
int num_diff_pixels_2 = cv::countNonZero(mask2);
// The border is different
EXPECT_LT(num_diff_pixels_1, (dstSize.width+dstSize.height)*5);
EXPECT_LT(num_diff_pixels_2, (dstSize.width+dstSize.height)*5);
}
typedef testing::TestWithParam<tuple<Size, int, int>> WarpPerspective;
TEST_P(WarpPerspective, accuracy)
{
cv::Size dstSize = get<0>(GetParam());
int interplation = get<1>(GetParam());
int borderType = get<2>(GetParam());
cv::Scalar borderValue = Scalar::all(100);
cv::Mat src = imread(cvtest::findDataFile("cv/shared/baboon.png"), cv::IMREAD_GRAYSCALE);
EXPECT_FALSE(src.empty());
cv::Mat dst, matrix, ref;
matrix.create(3, 3, CV_32FC1);
getInvertMatrix(src, dstSize, matrix);
cv::fastcv::warpPerspective(src, dst, matrix, dstSize, interplation, borderType, borderValue);
cv::warpPerspective(src, ref, matrix, dstSize, (interplation | cv::WARP_INVERSE_MAP), borderType, borderValue);
cv::Mat difference, mask;
cv::absdiff(dst, ref, difference);
cv::threshold(difference, mask, 10, 255, cv::THRESH_BINARY);
int num_diff_pixels = cv::countNonZero(mask);
EXPECT_LT(num_diff_pixels, src.size().area()*0.05);
}
// BUG: https://github.com/opencv/opencv_contrib/issues/3959
INSTANTIATE_TEST_CASE_P(FastCV_Extension, WarpPerspective,Combine(
::testing::Values(perf::szVGA, perf::sz720p, perf::sz1080p),
::testing::Values(INTER_NEAREST, INTER_LINEAR, INTER_AREA),
::testing::Values(BORDER_CONSTANT, BORDER_REPLICATE /*, BORDER_TRANSPARENT*/)
));
INSTANTIATE_TEST_CASE_P(FastCV_Extension, WarpPerspective2Plane, Values(perf::szVGA, perf::sz720p, perf::sz1080p));
TEST(WarpAffine3ChannelTest, accuracy)
{
cv::Mat src = imread(cvtest::findDataFile("cv/shared/baboon.png"));
// Define the transformation matrix
cv::Mat M = (cv::Mat_<float>(2, 3) << 2.0, 0, -50.0, 0, 2.0, -50.0);
cv::Size dsize(src.cols, src.rows);
cv::Mat dst;
cv::fastcv::warpAffine(src, dst, M, dsize);
EXPECT_FALSE(dst.empty());
}
TEST(WarpAffineROITest, accuracy)
{
cv::Mat src = cv::imread(cvtest::findDataFile("cv/shared/baboon.png"), cv::IMREAD_GRAYSCALE);
// Define the position and affine matrix
cv::Point2f position(src.cols / 2.0f, src.rows / 2.0f);
float angle = 180.0; // Rotation angle in degrees
float radians = angle * CV_PI / 180.0;
cv::Mat affine = (cv::Mat_<float>(2, 2) << cos(radians), -sin(radians), sin(radians), cos(radians));
cv::Mat patch;
cv::Mat roi = src(cv::Rect(0, 0, 100, 100));
cv::fastcv::warpAffine(roi, patch, affine, cv::Size(100, 100));
EXPECT_FALSE(patch.empty());
EXPECT_EQ(patch.size(), cv::Size(100, 100));
EXPECT_EQ(patch.type(), CV_8UC1);
}
typedef testing::TestWithParam<tuple<int, int>> WarpAffineTest;
TEST_P(WarpAffineTest, accuracy)
{
// Load the source image
cv::Mat src = cv::imread(cvtest::findDataFile("cv/shared/baboon.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(src.empty());
float angle = 30.0;// Rotation angle in degrees
float scale = 0.5;// Scale factor
cv::Mat affine = cv::getRotationMatrix2D(cv::Point2f(100, 100), angle, scale);
// Compute the inverse affine matrix
cv::Mat inverseAffine = getInverseAffine(affine);
// Define the destination size
cv::Size dsize(src.cols, src.rows);
// Define the output matrix
cv::Mat dst;
// Get the parameters
int interpolation = std::get<0>(GetParam());
int borderValue = std::get<1>(GetParam());
// Perform the affine transformation
cv::fastcv::warpAffine(src, dst, inverseAffine, dsize, interpolation, borderValue);
// Check that the output is not empty
EXPECT_FALSE(dst.empty());
}
INSTANTIATE_TEST_CASE_P(
FastCV_Extension,
WarpAffineTest,
::testing::Combine(
::testing::Values(INTER_NEAREST, INTER_LINEAR, INTER_AREA),
::testing::Values(0, 255) // Black and white borders
)
);
}
}