mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-19 02:16:34 +08:00
463 lines
14 KiB
C++
463 lines
14 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2015, Smart Engines Ltd, all rights reserved.
|
|
// Copyright (C) 2015, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), all rights reserved.
|
|
// Copyright (C) 2015, Dmitry Nikolaev, Simon Karpenko, Michail Aliev, Elena Kuznetsova, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
//----------------------utils---------------------------------------------------
|
|
|
|
template <typename T> struct Eps
|
|
{
|
|
static T get() { return 1; }
|
|
};
|
|
template <> struct Eps<float> { static float get() { return float(1e-3); } };
|
|
template <> struct Eps<double> { static double get() { return 1e-6; } };
|
|
|
|
template <typename T> struct MinPos
|
|
{
|
|
static T get() { return Eps<T>::get(); }
|
|
};
|
|
|
|
template <typename T> struct Max { static T get()
|
|
{
|
|
return saturate_cast<T>(numeric_limits<T>::max()); }
|
|
};
|
|
|
|
template <typename T> struct Rand
|
|
{
|
|
static T get(T _min = MinPos<T>::get(), T _max = Max<T>::get())
|
|
{
|
|
RNG& rng = TS::ptr()->get_rng();
|
|
return saturate_cast<T>(rng.uniform(int(std::max(MinPos<T>::get(),
|
|
_min)),
|
|
int(std::min(Max<T>::get(),
|
|
_max))));
|
|
}
|
|
};
|
|
template <> struct Rand <float>
|
|
{
|
|
static float get(float _min = MinPos<float>::get(),
|
|
float _max = Max<float>::get())
|
|
{
|
|
RNG& rng = TS::ptr()->get_rng();
|
|
return rng.uniform(std::max(MinPos<float>::get(), _min),
|
|
std::min(Max<float>::get(), _max));
|
|
}
|
|
};
|
|
template <> struct Rand <double>
|
|
{
|
|
static double get(double _min = MinPos<double>::get(),
|
|
double _max = Max<double>::get())
|
|
{
|
|
RNG& rng = TS::ptr()->get_rng();
|
|
return rng.uniform(std::max(MinPos<double>::get(), _min),
|
|
std::min(Max<double>::get(), _max));
|
|
}
|
|
};
|
|
|
|
template <typename T> struct Eq
|
|
{
|
|
static bool get(T a, T b)
|
|
{
|
|
return a < b ? b - a < Eps<T>::get() : a - b < Eps<T>::get();
|
|
}
|
|
};
|
|
|
|
//----------------------TestFHT-------------------------------------------------
|
|
class TestFHT
|
|
{
|
|
public:
|
|
TestFHT() : ts(TS::ptr()) {}
|
|
|
|
void run_n_tests(int depth,
|
|
int channels,
|
|
int pts_count,
|
|
int n_per_test);
|
|
|
|
private:
|
|
template <typename T>
|
|
int run_n_tests_t(int depth,
|
|
int channels,
|
|
int pts_count,
|
|
int n_per_test);
|
|
|
|
template <typename T>
|
|
int run_test(int depth,
|
|
int channels,
|
|
int pts_count);
|
|
|
|
template <typename T>
|
|
int put_random_points(Mat &img,
|
|
int count,
|
|
vector<Point> &pts);
|
|
|
|
int run_func(Mat const&src,
|
|
Mat& fht);
|
|
|
|
template <typename T>
|
|
int validate_test_results(Mat const &fht,
|
|
Mat const &src,
|
|
vector<Point> const& pts);
|
|
|
|
template <typename T> int validate_sum(Mat const& src, Mat const& fht);
|
|
int validate_point(Mat const& fht, vector<Point> const &pts);
|
|
int validate_line(Mat const& fht, Mat const& src, vector<Point> const& pts);
|
|
|
|
private:
|
|
TS *ts;
|
|
};
|
|
|
|
template <typename T>
|
|
int TestFHT::put_random_points(Mat &img, int count, vector<Point> &pts)
|
|
{
|
|
int code = TS::OK;
|
|
|
|
pts.resize(count, Point(-1, -1));
|
|
|
|
for (int i = 0; i < count; ++i)
|
|
{
|
|
RNG rng = ts->get_rng();
|
|
Point const pt(rng.uniform(0, img.cols),
|
|
rng.uniform(0, img.rows));
|
|
pts[i] = pt;
|
|
|
|
for (int c = 0; c < img.channels(); ++c)
|
|
{
|
|
T color = Rand<T>::get(MinPos<T>::get(),
|
|
T(Max<T>::get() / count));
|
|
|
|
T *img_line = (T*)(img.data + img.step * pt.y);
|
|
img_line[pt.x * img.channels() + c] = color;
|
|
}
|
|
}
|
|
|
|
return code;
|
|
}
|
|
|
|
template <typename T>
|
|
int TestFHT::validate_sum(Mat const& src, Mat const& fht)
|
|
{
|
|
int const channels = src.channels();
|
|
if (fht.channels() != channels)
|
|
return TS::FAIL_BAD_ARG_CHECK;
|
|
|
|
|
|
vector<Mat> src_channels(channels);
|
|
split(src, src_channels);
|
|
vector<Mat> fht_channels(channels);
|
|
split(fht, fht_channels);
|
|
|
|
for (int c = 0; c < channels; ++c)
|
|
{
|
|
T const src_sum = saturate_cast<T>(sum(src_channels[c]).val[0]);
|
|
for (int y = 0; y < fht.rows; ++y)
|
|
{
|
|
T const fht_sum = saturate_cast<T>(sum(fht_channels[c].row(y)).val[0]);
|
|
if (!Eq<T>::get(src_sum, fht_sum))
|
|
{
|
|
ts->printf(TS::LOG,
|
|
"The sum of column #%d of channel #%d of the fast "
|
|
"hough transform result and the sum of source image"
|
|
" mismatch (=%g, should be =%g)\n",
|
|
y, c, (float)fht_sum, (float)src_sum);
|
|
return TS::FAIL_BAD_ACCURACY;
|
|
}
|
|
}
|
|
}
|
|
return TS::OK;
|
|
}
|
|
|
|
int TestFHT::validate_point(Mat const& fht,
|
|
vector<Point> const &pts)
|
|
{
|
|
if (pts.empty())
|
|
return TS::OK;
|
|
|
|
for (size_t i = 1; i < pts.size(); ++i)
|
|
{
|
|
if (pts[0] != pts[i])
|
|
return TS::OK;
|
|
}
|
|
|
|
int const channels = fht.channels();
|
|
vector<Mat> fht_channels(channels);
|
|
split(fht, fht_channels);
|
|
|
|
for (int c = 0; c < channels; ++c)
|
|
{
|
|
for (int y = 0; y < fht.rows; ++y)
|
|
{
|
|
int cnt = countNonZero(fht_channels[c].row(y));
|
|
if (cnt != 1)
|
|
{
|
|
ts->printf(TS::LOG,
|
|
"The incorrect count of non-zero values in column "
|
|
"#%d, channel #%d of FastHoughTransform result "
|
|
"image (=%d, should be %d)\n",
|
|
y, c, cnt, 1);
|
|
return TS::FAIL_BAD_ACCURACY;
|
|
}
|
|
}
|
|
}
|
|
return TS::OK;
|
|
}
|
|
|
|
static const double MAX_LDIST = 2.0;
|
|
int TestFHT::validate_line(Mat const& fht,
|
|
Mat const& src,
|
|
vector<Point> const& pts)
|
|
{
|
|
size_t const size = (int)pts.size();
|
|
if (size < 2)
|
|
return TS::OK;
|
|
size_t first_pt_i = 0, second_pt_i = 1;
|
|
for (size_t i = first_pt_i + 1; i < size; ++i)
|
|
{
|
|
if (pts[i] != pts[first_pt_i])
|
|
{
|
|
second_pt_i = first_pt_i;
|
|
break;
|
|
}
|
|
}
|
|
if (pts[second_pt_i] == pts[first_pt_i])
|
|
return TS::OK;
|
|
for (size_t i = second_pt_i + 1; i < size; ++i)
|
|
{
|
|
if (pts[i] != pts[second_pt_i])
|
|
return TS::OK;
|
|
}
|
|
const Point &f = pts[first_pt_i];
|
|
const Point &s = pts[second_pt_i];
|
|
|
|
int const channels = fht.channels();
|
|
vector<Mat> fht_channels(channels);
|
|
split(fht, fht_channels);
|
|
|
|
for (int ch = 0; ch < channels; ++ch)
|
|
{
|
|
Point fht_max(-1, -1);
|
|
minMaxLoc(fht_channels[ch], 0, 0, 0, &fht_max);
|
|
Vec4i src_line = HoughPoint2Line(fht_max, src,
|
|
ARO_315_135, HDO_DESKEW, RO_STRICT);
|
|
|
|
double const a = src_line[1] - src_line[3];
|
|
double const b = src_line[2] - src_line[0];
|
|
double const c = - (a * src_line[0] + b * src_line[1]);
|
|
|
|
double const fd = abs(f.x * a + f.y * b + c) / sqrt(a * a + b * b);
|
|
double const sd = abs(s.x * a + s.y * b + c) / sqrt(a * a + b * b);
|
|
double const dist = std::max(fd, sd);
|
|
|
|
if (dist > MAX_LDIST)
|
|
{
|
|
ts->printf(TS::LOG,
|
|
"Failed to detect max line in channels %d (distance "
|
|
"between point and line correspoinding of maximum in "
|
|
"FastHoughTransform space is #%g)\n", ch, dist);
|
|
return TS::FAIL_BAD_ACCURACY;
|
|
}
|
|
}
|
|
|
|
return TS::OK;
|
|
}
|
|
|
|
template <typename T>
|
|
int TestFHT::validate_test_results(Mat const &fht,
|
|
Mat const &src,
|
|
vector<Point> const& pts)
|
|
{
|
|
int code = validate_sum<T>(src, fht);
|
|
if (code == TS::OK)
|
|
code = validate_point(fht, pts);
|
|
if (code == TS::OK)
|
|
code = validate_line(fht, src, pts);
|
|
return code;
|
|
}
|
|
|
|
int TestFHT::run_func(Mat const&src,
|
|
Mat& fht)
|
|
{
|
|
int code = TS::OK;
|
|
FastHoughTransform(src, fht, src.depth());
|
|
return code;
|
|
}
|
|
|
|
static Size random_size(int const max_size_log,
|
|
int const elem_size)
|
|
{
|
|
RNG& rng = TS::ptr()->get_rng();
|
|
return randomSize(rng, std::max(1,
|
|
max_size_log - cvRound(log(double(elem_size)))));
|
|
}
|
|
|
|
static const int FHT_MAX_SIZE_LOG = 9;
|
|
|
|
template <typename T>
|
|
int TestFHT::run_test(int depth,
|
|
int channels,
|
|
int pts_count)
|
|
{
|
|
int code = TS::OK;
|
|
|
|
Size size = random_size(FHT_MAX_SIZE_LOG,
|
|
CV_ELEM_SIZE(CV_MAKE_TYPE(depth, channels)));
|
|
Mat src = Mat::zeros(size, CV_MAKETYPE(depth, channels));
|
|
|
|
vector<Point> pts;
|
|
code = put_random_points<T>(src, pts_count, pts);
|
|
if (code != TS::OK)
|
|
return code;
|
|
|
|
Mat fht;
|
|
code = run_func(src, fht);
|
|
if (code != TS::OK)
|
|
return code;
|
|
|
|
code = validate_test_results<T>(fht, src, pts);
|
|
return code;
|
|
}
|
|
|
|
void TestFHT::run_n_tests(int depth,
|
|
int channels,
|
|
int pts_count,
|
|
int n)
|
|
{
|
|
try
|
|
{
|
|
int code = TS::OK;
|
|
|
|
switch (depth)
|
|
{
|
|
case CV_8U:
|
|
code = run_n_tests_t<uchar>(depth, channels, pts_count, n);
|
|
break;
|
|
case CV_8S:
|
|
code = run_n_tests_t<schar>(depth, channels, pts_count, n);
|
|
break;
|
|
case CV_16U:
|
|
code = run_n_tests_t<ushort>(depth, channels, pts_count, n);
|
|
break;
|
|
case CV_16S:
|
|
code = run_n_tests_t<short>(depth, channels, pts_count, n);
|
|
break;
|
|
case CV_32S:
|
|
code = run_n_tests_t<int>(depth, channels, pts_count, n);
|
|
break;
|
|
case CV_32F:
|
|
code = run_n_tests_t<float>(depth, channels, pts_count, n);
|
|
break;
|
|
case CV_64F:
|
|
code = run_n_tests_t<double>(depth, channels, pts_count, n);
|
|
break;
|
|
default:
|
|
code = TS::FAIL_BAD_ARG_CHECK;
|
|
ts->printf(TS::LOG, "Unknown depth %d\n", depth);
|
|
break;
|
|
}
|
|
if (code != TS::OK)
|
|
throw TS::FailureCode(code);
|
|
}
|
|
catch (const TS::FailureCode& fc)
|
|
{
|
|
std::string errorStr = TS::str_from_code(fc);
|
|
ts->printf(TS::LOG,
|
|
"General failure:\n\t%s (%d)\n", errorStr.c_str(), fc);
|
|
|
|
ts->set_failed_test_info(fc);
|
|
}
|
|
catch(...)
|
|
{
|
|
ts->printf(TS::LOG, "Unknown failure\n");
|
|
ts->set_failed_test_info(TS::FAIL_EXCEPTION);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
int TestFHT::run_n_tests_t(int depth,
|
|
int channels,
|
|
int pts_count,
|
|
int n)
|
|
{
|
|
int code = TS::OK;
|
|
for (int iTest = 0; iTest < n; ++iTest)
|
|
{
|
|
code = run_test<T>(depth, channels, pts_count);
|
|
if (code != TS::OK)
|
|
{
|
|
ts->printf(TS::LOG, "Test %d failed with code %d\n", iTest, code);
|
|
break;
|
|
}
|
|
}
|
|
return code;
|
|
}
|
|
|
|
//----------------------TEST_P--------------------------------------------------
|
|
typedef tuple<int, int, int, int> Depth_Channels_PtsC_nPerTest;
|
|
typedef TestWithParam<Depth_Channels_PtsC_nPerTest> FastHoughTransformTest;
|
|
|
|
TEST_P(FastHoughTransformTest, accuracy)
|
|
{
|
|
int const depth = get<0>(GetParam());
|
|
int const channels = get<1>(GetParam());
|
|
int const pts_count = get<2>(GetParam());
|
|
int const n_per_test = get<3>(GetParam());
|
|
|
|
TestFHT testFht;
|
|
testFht.run_n_tests(depth, channels, pts_count, n_per_test);
|
|
}
|
|
|
|
#define FHT_ALL_DEPTHS CV_8U, CV_16U, CV_32S, CV_32F, CV_64F
|
|
#define FHT_ALL_CHANNELS 1, 3, 4
|
|
|
|
INSTANTIATE_TEST_CASE_P(FullSet, FastHoughTransformTest,
|
|
Combine(Values(FHT_ALL_DEPTHS),
|
|
Values(FHT_ALL_CHANNELS),
|
|
Values(1, 2),
|
|
Values(5)));
|
|
|
|
#undef FHT_ALL_DEPTHS
|
|
#undef FHT_ALL_CHANNELS
|
|
|
|
}} // namespace
|