mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-16 05:17:39 +08:00
158 lines
4.9 KiB
C++
158 lines
4.9 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
#include "test_precomp.hpp"
|
|
#include "opencv2/ximgproc/sparse_match_interpolator.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
static string getDataDir()
|
|
{
|
|
return cvtest::TS::ptr()->get_data_path();
|
|
}
|
|
|
|
const float FLOW_TAG_FLOAT = 202021.25f;
|
|
Mat readOpticalFlow( const String& path )
|
|
{
|
|
// CV_Assert(sizeof(float) == 4);
|
|
//FIXME: ensure right sizes of int and float - here and in writeOpticalFlow()
|
|
|
|
Mat_<Point2f> flow;
|
|
std::ifstream file(path.c_str(), std::ios_base::binary);
|
|
if ( !file.good() )
|
|
return CV_CXX_MOVE(flow); // no file - return empty matrix
|
|
|
|
float tag;
|
|
file.read((char*) &tag, sizeof(float));
|
|
if ( tag != FLOW_TAG_FLOAT )
|
|
return CV_CXX_MOVE(flow);
|
|
|
|
int width, height;
|
|
|
|
file.read((char*) &width, 4);
|
|
file.read((char*) &height, 4);
|
|
|
|
flow.create(height, width);
|
|
|
|
for ( int i = 0; i < flow.rows; ++i )
|
|
{
|
|
for ( int j = 0; j < flow.cols; ++j )
|
|
{
|
|
Point2f u;
|
|
file.read((char*) &u.x, sizeof(float));
|
|
file.read((char*) &u.y, sizeof(float));
|
|
if ( !file.good() )
|
|
{
|
|
flow.release();
|
|
return CV_CXX_MOVE(flow);
|
|
}
|
|
|
|
flow(i, j) = u;
|
|
}
|
|
}
|
|
file.close();
|
|
return CV_CXX_MOVE(flow);
|
|
}
|
|
|
|
CV_ENUM(GuideTypes, CV_8UC1, CV_8UC3)
|
|
typedef tuple<Size, GuideTypes> InterpolatorParams;
|
|
typedef TestWithParam<InterpolatorParams> InterpolatorTest;
|
|
|
|
TEST(InterpolatorTest, ReferenceAccuracy)
|
|
{
|
|
double MAX_DIF = 1.0;
|
|
double MAX_MEAN_DIF = 1.0 / 256.0;
|
|
string dir = getDataDir() + "cv/sparse_match_interpolator";
|
|
|
|
Mat src = imread(getDataDir() + "cv/optflow/RubberWhale1.png",IMREAD_COLOR);
|
|
ASSERT_FALSE(src.empty());
|
|
|
|
Mat ref_flow = readOpticalFlow(dir + "/RubberWhale_reference_result.flo");
|
|
ASSERT_FALSE(ref_flow.empty());
|
|
|
|
std::ifstream file((dir + "/RubberWhale_sparse_matches.txt").c_str());
|
|
float from_x,from_y,to_x,to_y;
|
|
vector<Point2f> from_points;
|
|
vector<Point2f> to_points;
|
|
|
|
while(file >> from_x >> from_y >> to_x >> to_y)
|
|
{
|
|
from_points.push_back(Point2f(from_x,from_y));
|
|
to_points.push_back(Point2f(to_x,to_y));
|
|
}
|
|
|
|
Mat res_flow;
|
|
|
|
Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator();
|
|
interpolator->setK(128);
|
|
interpolator->setSigma(0.05f);
|
|
interpolator->setUsePostProcessing(true);
|
|
interpolator->setFGSLambda(500.0f);
|
|
interpolator->setFGSSigma(1.5f);
|
|
interpolator->interpolate(src,from_points,Mat(),to_points,res_flow);
|
|
|
|
EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_INF), MAX_DIF);
|
|
EXPECT_LE(cv::norm(res_flow, ref_flow, NORM_L1) , MAX_MEAN_DIF*res_flow.total());
|
|
}
|
|
|
|
TEST_P(InterpolatorTest, MultiThreadReproducibility)
|
|
{
|
|
if (cv::getNumberOfCPUs() == 1)
|
|
return;
|
|
|
|
double MAX_DIF = 1.0;
|
|
double MAX_MEAN_DIF = 1.0 / 256.0;
|
|
int loopsCount = 2;
|
|
RNG rng(0);
|
|
|
|
InterpolatorParams params = GetParam();
|
|
Size size = get<0>(params);
|
|
int guideType = get<1>(params);
|
|
|
|
Mat from(size, guideType);
|
|
randu(from, 0, 255);
|
|
|
|
int num_matches = rng.uniform(5,SHRT_MAX-1);
|
|
vector<Point2f> from_points;
|
|
vector<Point2f> to_points;
|
|
|
|
for(int i=0;i<num_matches;i++)
|
|
{
|
|
from_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f)));
|
|
to_points.push_back(Point2f(rng.uniform(0.01f,(float)size.width-1.01f),rng.uniform(0.01f,(float)size.height-1.01f)));
|
|
}
|
|
|
|
int nThreads = cv::getNumThreads();
|
|
if (nThreads == 1)
|
|
throw SkipTestException("Single thread environment");
|
|
for (int iter = 0; iter <= loopsCount; iter++)
|
|
{
|
|
int K = rng.uniform(4,512);
|
|
float sigma = rng.uniform(0.01f,0.5f);
|
|
float FGSlambda = rng.uniform(100.0f, 10000.0f);
|
|
float FGSsigma = rng.uniform(0.5f, 100.0f);
|
|
|
|
Ptr<EdgeAwareInterpolator> interpolator = createEdgeAwareInterpolator();
|
|
interpolator->setK(K);
|
|
interpolator->setSigma(sigma);
|
|
interpolator->setUsePostProcessing(true);
|
|
interpolator->setFGSLambda(FGSlambda);
|
|
interpolator->setFGSSigma(FGSsigma);
|
|
|
|
cv::setNumThreads(nThreads);
|
|
Mat resMultiThread;
|
|
interpolator->interpolate(from,from_points,Mat(),to_points,resMultiThread);
|
|
|
|
cv::setNumThreads(1);
|
|
Mat resSingleThread;
|
|
interpolator->interpolate(from,from_points,Mat(),to_points,resSingleThread);
|
|
|
|
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
|
|
EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1) , MAX_MEAN_DIF*resMultiThread.total());
|
|
}
|
|
}
|
|
INSTANTIATE_TEST_CASE_P(FullSet,InterpolatorTest, Combine(Values(szODD,szVGA), GuideTypes::all()));
|
|
|
|
|
|
}} // namespace
|