Files
openocd/src/rtos/rtkernel.c
Antonio Borneo b3b790e4e0 rtos: rework rtos_create()
To simplify the caller of rtos_create(), convert the code from
jimtcl oriented to OpenOCD commands.

While there, fix inconsistencies in almost every rtos create()
method and reset rtos_auto_detect to better cooperate on run-time
rtos configuration.

Change-Id: I59c443aaed77a48174facdfc86db75d6b28c8480
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: https://review.openocd.org/c/openocd/+/8830
Tested-by: jenkins
2025-05-09 12:06:54 +00:00

384 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2016-2023 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/time_support.h>
#include <jtag/jtag.h>
#include "target/target.h"
#include "rtos.h"
#include "helper/log.h"
#include "helper/types.h"
#include "rtos_standard_stackings.h"
#include "target/armv7m.h"
#include "target/cortex_m.h"
#define ST_DEAD BIT(0) /* Task is waiting to be deleted */
#define ST_WAIT BIT(1) /* Task is blocked: */
#define ST_SEM BIT(2) /* on semaphore */
#define ST_MTX BIT(3) /* on mutex */
#define ST_SIG BIT(4) /* on signal */
#define ST_DLY BIT(5) /* on timer */
#define ST_FLAG BIT(6) /* on flag */
#define ST_FLAG_ALL BIT(7) /* on flag and flag mode is "ALL" */
#define ST_MBOX BIT(8) /* on mailbox */
#define ST_STP BIT(9) /* self stopped */
#define ST_SUSPEND BIT(10) /* Task is suspended */
#define ST_TT BIT(11) /* Time triggered task */
#define ST_TT_YIELD BIT(12) /* Time triggered task that yields */
#define ST_CREATE BIT(13) /* Task was created by task_create() */
struct rtkernel_params {
const char *target_name;
const struct rtos_register_stacking *stacking_info_cm3;
const struct rtos_register_stacking *stacking_info_cm4f;
const struct rtos_register_stacking *stacking_info_cm4f_fpu;
};
static const struct rtkernel_params rtkernel_params_list[] = {
{
"cortex_m", /* target_name */
&rtos_standard_cortex_m3_stacking, /* stacking_info */
&rtos_standard_cortex_m4f_stacking,
&rtos_standard_cortex_m4f_fpu_stacking,
},
{
"hla_target", /* target_name */
&rtos_standard_cortex_m3_stacking, /* stacking_info */
&rtos_standard_cortex_m4f_stacking,
&rtos_standard_cortex_m4f_fpu_stacking,
},
};
enum rtkernel_symbol_values {
sym_os_state = 0,
sym___off_os_state2chain = 1,
sym___off_os_state2current = 2,
sym___off_task2chain = 3,
sym___off_task2magic = 4,
sym___off_task2stack = 5,
sym___off_task2state = 6,
sym___off_task2name = 7,
sym___val_task_magic = 8,
};
struct symbols {
const char *name;
bool optional;
};
static const struct symbols rtkernel_symbol_list[] = {
{ "os_state", false },
{ "__off_os_state2chain", false },
{ "__off_os_state2current", false },
{ "__off_task2chain", false },
{ "__off_task2magic", false },
{ "__off_task2stack", false },
{ "__off_task2state", false },
{ "__off_task2name", false },
{ "__val_task_magic", false },
{ NULL, false }
};
static void *realloc_preserve(void *ptr, size_t old_size, size_t new_size)
{
void *new_ptr = malloc(new_size);
if (new_ptr) {
memcpy(new_ptr, ptr, MIN(old_size, new_size));
free(ptr);
}
return new_ptr;
}
static int rtkernel_add_task(struct rtos *rtos, uint32_t task, uint32_t current_task)
{
int retval;
int new_thread_count = rtos->thread_count + 1;
struct thread_detail *new_thread_details = realloc_preserve(rtos->thread_details,
rtos->thread_count * sizeof(struct thread_detail),
new_thread_count * sizeof(struct thread_detail));
if (!new_thread_details) {
LOG_ERROR("Error growing memory to %d threads", new_thread_count);
return ERROR_FAIL;
}
rtos->thread_details = new_thread_details;
struct thread_detail *thread = &new_thread_details[rtos->thread_count];
*thread = (struct thread_detail){ .threadid = task, .exists = true };
/* Read the task name */
uint32_t name;
retval = target_read_u32(rtos->target, task + rtos->symbols[sym___off_task2name].address, &name);
if (retval != ERROR_OK) {
LOG_ERROR("Could not read task name pointer from target");
return retval;
}
uint8_t tmp_str[33];
retval = target_read_buffer(rtos->target, name, sizeof(tmp_str) - 1, tmp_str);
if (retval != ERROR_OK) {
LOG_ERROR("Error reading task name from target");
return retval;
}
tmp_str[sizeof(tmp_str) - 1] = '\0';
LOG_DEBUG("task name at 0x%" PRIx32 ", value \"%s\"", name, tmp_str);
if (tmp_str[0] != '\0')
thread->thread_name_str = strdup((char *)tmp_str);
else
thread->thread_name_str = strdup("No Name");
/* Read the task state */
uint16_t state;
retval = target_read_u16(rtos->target, task + rtos->symbols[sym___off_task2state].address, &state);
if (retval != ERROR_OK) {
LOG_ERROR("Could not read task state from target");
return retval;
}
LOG_DEBUG("task state 0x%" PRIx16, state);
char state_str[64] = "";
if (state & ST_TT)
strcat(state_str, "TT|");
if (task == current_task) {
strcat(state_str, "RUN");
} else {
if (state & (ST_TT | ST_TT_YIELD))
strcat(state_str, "YIELD");
else if (state & ST_DEAD)
strcat(state_str, "DEAD");
else if (state & ST_WAIT)
strcat(state_str, "WAIT");
else if (state & ST_SUSPEND)
strcat(state_str, "SUSP");
else
strcat(state_str, "READY");
}
if (state & ST_SEM)
strcat(state_str, "|SEM");
if (state & ST_MTX)
strcat(state_str, "|MTX");
if (state & ST_SIG)
strcat(state_str, "|SIG");
if (state & ST_DLY)
strcat(state_str, "|DLY");
if ((state & ST_FLAG) || (state & ST_FLAG_ALL))
strcat(state_str, "|FLAG");
if (state & ST_FLAG_ALL)
strcat(state_str, "_ALL");
if (state & ST_MBOX)
strcat(state_str, "|MBOX");
if (state & ST_STP)
strcat(state_str, "|STP");
thread->extra_info_str = strdup(state_str);
rtos->thread_count = new_thread_count;
if (task == current_task)
rtos->current_thread = task;
return ERROR_OK;
}
static int rtkernel_verify_task(struct rtos *rtos, uint32_t task)
{
int retval;
uint32_t magic;
retval = target_read_u32(rtos->target, task + rtos->symbols[sym___off_task2magic].address, &magic);
if (retval != ERROR_OK) {
LOG_ERROR("Could not read task magic from target");
return retval;
}
if (magic != rtos->symbols[sym___val_task_magic].address) {
LOG_ERROR("Invalid task found (magic=0x%" PRIx32 ")", magic);
return ERROR_FAIL;
}
return retval;
}
static int rtkernel_update_threads(struct rtos *rtos)
{
/* wipe out previous thread details if any */
/* do this first because rtos layer does not check our retval */
rtos_free_threadlist(rtos);
rtos->current_thread = 0;
if (!rtos->symbols) {
LOG_ERROR("No symbols for rt-kernel");
return -3;
}
/* read the current task */
uint32_t current_task;
int retval = target_read_u32(rtos->target,
rtos->symbols[sym_os_state].address + rtos->symbols[sym___off_os_state2current].address,
&current_task);
if (retval != ERROR_OK) {
LOG_ERROR("Error reading current task");
return retval;
}
LOG_DEBUG("current task is 0x%" PRIx32, current_task);
retval = rtkernel_verify_task(rtos, current_task);
if (retval != ERROR_OK) {
LOG_ERROR("Current task is invalid");
return retval;
}
/* loop through kernel task list */
uint32_t chain = rtos->symbols[sym_os_state].address + rtos->symbols[sym___off_os_state2chain].address;
LOG_DEBUG("chain start at 0x%" PRIx32, chain);
uint32_t next = chain;
for (;;) {
retval = target_read_u32(rtos->target, next, &next);
if (retval != ERROR_OK) {
LOG_ERROR("Could not read rt-kernel data structure from target");
return retval;
}
LOG_DEBUG("next entry at 0x%" PRIx32, next);
if (next == chain) {
LOG_DEBUG("end of chain detected");
break;
}
uint32_t task = next - rtos->symbols[sym___off_task2chain].address;
LOG_DEBUG("found task at 0x%" PRIx32, task);
retval = rtkernel_verify_task(rtos, task);
if (retval != ERROR_OK) {
LOG_ERROR("Invalid task found");
return retval;
}
retval = rtkernel_add_task(rtos, task, current_task);
if (retval != ERROR_OK) {
LOG_ERROR("Could not add task to rtos system");
return retval;
}
}
return ERROR_OK;
}
static int rtkernel_get_thread_reg_list(struct rtos *rtos, int64_t thread_id,
struct rtos_reg **reg_list, int *num_regs)
{
uint32_t stack_ptr = 0;
if (!rtos)
return -1;
if (thread_id == 0)
return -2;
if (!rtos->rtos_specific_params)
return -1;
const struct rtkernel_params *param = rtos->rtos_specific_params;
/* Read the stack pointer */
int retval = target_read_u32(rtos->target, thread_id + rtos->symbols[sym___off_task2stack].address, &stack_ptr);
if (retval != ERROR_OK) {
LOG_ERROR("Error reading stack pointer from rtkernel thread");
return retval;
}
LOG_DEBUG("stack pointer at 0x%" PRIx64 ", value 0x%" PRIx32,
thread_id + rtos->symbols[sym___off_task2stack].address,
stack_ptr);
/* Adjust stack pointer to ignore non-standard BASEPRI register stacking */
stack_ptr += 4;
/* Check for armv7m with *enabled* FPU, i.e. a Cortex M4F */
bool cm4_fpu_enabled = false;
struct armv7m_common *armv7m_target = target_to_armv7m(rtos->target);
if (is_armv7m(armv7m_target)) {
if (armv7m_target->fp_feature != FP_NONE) {
/* Found ARM v7m target which includes a FPU */
uint32_t cpacr;
retval = target_read_u32(rtos->target, FPU_CPACR, &cpacr);
if (retval != ERROR_OK) {
LOG_ERROR("Could not read CPACR register to check FPU state");
return -1;
}
/* Check if CP10 and CP11 are set to full access. */
if (cpacr & 0x00F00000) {
/* Found target with enabled FPU */
cm4_fpu_enabled = true;
}
}
}
if (!cm4_fpu_enabled) {
LOG_DEBUG("cm3 stacking");
return rtos_generic_stack_read(rtos->target, param->stacking_info_cm3, stack_ptr, reg_list, num_regs);
}
/* Read the LR to decide between stacking with or without FPU */
uint32_t lr_svc;
retval = target_read_u32(rtos->target, stack_ptr + 0x20, &lr_svc);
if (retval != ERROR_OK) {
LOG_OUTPUT("Error reading stack frame from rtkernel thread\r\n");
return retval;
}
if ((lr_svc & 0x10) == 0) {
LOG_DEBUG("cm4f_fpu stacking");
return rtos_generic_stack_read(rtos->target, param->stacking_info_cm4f_fpu, stack_ptr, reg_list, num_regs);
}
LOG_DEBUG("cm4f stacking");
return rtos_generic_stack_read(rtos->target, param->stacking_info_cm4f, stack_ptr, reg_list, num_regs);
}
static int rtkernel_get_symbol_list_to_lookup(struct symbol_table_elem *symbol_list[])
{
*symbol_list = calloc(ARRAY_SIZE(rtkernel_symbol_list), sizeof(struct symbol_table_elem));
if (!*symbol_list)
return ERROR_FAIL;
for (size_t i = 0; i < ARRAY_SIZE(rtkernel_symbol_list); i++) {
(*symbol_list)[i].symbol_name = rtkernel_symbol_list[i].name;
(*symbol_list)[i].optional = rtkernel_symbol_list[i].optional;
}
return ERROR_OK;
}
static bool rtkernel_detect_rtos(struct target *target)
{
return (target->rtos->symbols) &&
(target->rtos->symbols[sym___off_os_state2chain].address != 0);
}
static int rtkernel_create(struct target *target)
{
for (size_t i = 0; i < ARRAY_SIZE(rtkernel_params_list); i++) {
if (strcmp(rtkernel_params_list[i].target_name, target_type_name(target)) == 0) {
target->rtos->rtos_specific_params = (void *)&rtkernel_params_list[i];
return ERROR_OK;
}
}
LOG_ERROR("Could not find target in rt-kernel compatibility list");
return ERROR_FAIL;
}
const struct rtos_type rtkernel_rtos = {
.name = "rtkernel",
.detect_rtos = rtkernel_detect_rtos,
.create = rtkernel_create,
.update_threads = rtkernel_update_threads,
.get_thread_reg_list = rtkernel_get_thread_reg_list,
.get_symbol_list_to_lookup = rtkernel_get_symbol_list_to_lookup,
};