[WOW64] Finished skeleton code for PE build (#2542)

* [WOW64] Finished skeleton code for PE build

* move musl to external
This commit is contained in:
Yang Liu 2025-04-17 18:30:59 +08:00 committed by GitHub
parent 9579dd9ff1
commit 882d933d84
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
37 changed files with 2834 additions and 13 deletions

71
external/musl/__cos.c vendored Normal file
View File

@ -0,0 +1,71 @@
/* origin: FreeBSD /usr/src/lib/msun/src/k_cos.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __cos( x, y )
* kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
*
* Algorithm
* 1. Since cos(-x) = cos(x), we need only to consider positive x.
* 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
* 3. cos(x) is approximated by a polynomial of degree 14 on
* [0,pi/4]
* 4 14
* cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
* where the remez error is
*
* | 2 4 6 8 10 12 14 | -58
* |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
* | |
*
* 4 6 8 10 12 14
* 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
* cos(x) ~ 1 - x*x/2 + r
* since cos(x+y) ~ cos(x) - sin(x)*y
* ~ cos(x) - x*y,
* a correction term is necessary in cos(x) and hence
* cos(x+y) = 1 - (x*x/2 - (r - x*y))
* For better accuracy, rearrange to
* cos(x+y) ~ w + (tmp + (r-x*y))
* where w = 1 - x*x/2 and tmp is a tiny correction term
* (1 - x*x/2 == w + tmp exactly in infinite precision).
* The exactness of w + tmp in infinite precision depends on w
* and tmp having the same precision as x. If they have extra
* precision due to compiler bugs, then the extra precision is
* only good provided it is retained in all terms of the final
* expression for cos(). Retention happens in all cases tested
* under FreeBSD, so don't pessimize things by forcibly clipping
* any extra precision in w.
*/
#include "libm.h"
static const double
C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
double __cos(double x, double y)
{
double_t hz,z,r,w;
z = x*x;
w = z*z;
r = z*(C1+z*(C2+z*C3)) + w*w*(C4+z*(C5+z*C6));
hz = 0.5*z;
w = 1.0-hz;
return w + (((1.0-w)-hz) + (z*r-x*y));
}

6
external/musl/__math_divzero.c vendored Normal file
View File

@ -0,0 +1,6 @@
#include "libm.h"
double __math_divzero(uint32_t sign)
{
return fp_barrier(sign ? -1.0 : 1.0) / 0.0;
}

6
external/musl/__math_invalid.c vendored Normal file
View File

@ -0,0 +1,6 @@
#include "libm.h"
double __math_invalid(double x)
{
return (x - x) / (x - x);
}

190
external/musl/__rem_pio2.c vendored Normal file
View File

@ -0,0 +1,190 @@
/* origin: FreeBSD /usr/src/lib/msun/src/e_rem_pio2.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* Optimized by Bruce D. Evans.
*/
/* __rem_pio2(x,y)
*
* return the remainder of x rem pi/2 in y[0]+y[1]
* use __rem_pio2_large() for large x
*/
#include "libm.h"
#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
#define EPS DBL_EPSILON
#elif FLT_EVAL_METHOD==2
#define EPS LDBL_EPSILON
#endif
/*
* invpio2: 53 bits of 2/pi
* pio2_1: first 33 bit of pi/2
* pio2_1t: pi/2 - pio2_1
* pio2_2: second 33 bit of pi/2
* pio2_2t: pi/2 - (pio2_1+pio2_2)
* pio2_3: third 33 bit of pi/2
* pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
*/
static const double
toint = 1.5/EPS,
pio4 = 0x1.921fb54442d18p-1,
invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
/* caller must handle the case when reduction is not needed: |x| ~<= pi/4 */
int __rem_pio2(double x, double *y)
{
union {double f; uint64_t i;} u = {x};
double_t z,w,t,r,fn;
double tx[3],ty[2];
uint32_t ix;
int sign, n, ex, ey, i;
sign = u.i>>63;
ix = u.i>>32 & 0x7fffffff;
if (ix <= 0x400f6a7a) { /* |x| ~<= 5pi/4 */
if ((ix & 0xfffff) == 0x921fb) /* |x| ~= pi/2 or 2pi/2 */
goto medium; /* cancellation -- use medium case */
if (ix <= 0x4002d97c) { /* |x| ~<= 3pi/4 */
if (!sign) {
z = x - pio2_1; /* one round good to 85 bits */
y[0] = z - pio2_1t;
y[1] = (z-y[0]) - pio2_1t;
return 1;
} else {
z = x + pio2_1;
y[0] = z + pio2_1t;
y[1] = (z-y[0]) + pio2_1t;
return -1;
}
} else {
if (!sign) {
z = x - 2*pio2_1;
y[0] = z - 2*pio2_1t;
y[1] = (z-y[0]) - 2*pio2_1t;
return 2;
} else {
z = x + 2*pio2_1;
y[0] = z + 2*pio2_1t;
y[1] = (z-y[0]) + 2*pio2_1t;
return -2;
}
}
}
if (ix <= 0x401c463b) { /* |x| ~<= 9pi/4 */
if (ix <= 0x4015fdbc) { /* |x| ~<= 7pi/4 */
if (ix == 0x4012d97c) /* |x| ~= 3pi/2 */
goto medium;
if (!sign) {
z = x - 3*pio2_1;
y[0] = z - 3*pio2_1t;
y[1] = (z-y[0]) - 3*pio2_1t;
return 3;
} else {
z = x + 3*pio2_1;
y[0] = z + 3*pio2_1t;
y[1] = (z-y[0]) + 3*pio2_1t;
return -3;
}
} else {
if (ix == 0x401921fb) /* |x| ~= 4pi/2 */
goto medium;
if (!sign) {
z = x - 4*pio2_1;
y[0] = z - 4*pio2_1t;
y[1] = (z-y[0]) - 4*pio2_1t;
return 4;
} else {
z = x + 4*pio2_1;
y[0] = z + 4*pio2_1t;
y[1] = (z-y[0]) + 4*pio2_1t;
return -4;
}
}
}
if (ix < 0x413921fb) { /* |x| ~< 2^20*(pi/2), medium size */
medium:
/* rint(x/(pi/2)) */
fn = rint(x * invpio2);
n = (int32_t)fn;
r = x - fn*pio2_1;
w = fn*pio2_1t; /* 1st round, good to 85 bits */
/* Matters with directed rounding. */
if (predict_false(r - w < -pio4)) {
n--;
fn--;
r = x - fn*pio2_1;
w = fn*pio2_1t;
} else if (predict_false(r - w > pio4)) {
n++;
fn++;
r = x - fn*pio2_1;
w = fn*pio2_1t;
}
y[0] = r - w;
u.f = y[0];
ey = u.i>>52 & 0x7ff;
ex = ix>>20;
if (ex - ey > 16) { /* 2nd round, good to 118 bits */
t = r;
w = fn*pio2_2;
r = t - w;
w = fn*pio2_2t - ((t-r)-w);
y[0] = r - w;
u.f = y[0];
ey = u.i>>52 & 0x7ff;
if (ex - ey > 49) { /* 3rd round, good to 151 bits, covers all cases */
t = r;
w = fn*pio2_3;
r = t - w;
w = fn*pio2_3t - ((t-r)-w);
y[0] = r - w;
}
}
y[1] = (r - y[0]) - w;
return n;
}
/*
* all other (large) arguments
*/
if (ix >= 0x7ff00000) { /* x is inf or NaN */
y[0] = y[1] = x - x;
return 0;
}
/* set z = scalbn(|x|,-ilogb(x)+23) */
u.f = x;
u.i &= (uint64_t)-1>>12;
u.i |= (uint64_t)(0x3ff + 23)<<52;
z = u.f;
for (i=0; i < 2; i++) {
tx[i] = (double)(int32_t)z;
z = (z-tx[i])*0x1p24;
}
tx[i] = z;
/* skip zero terms, first term is non-zero */
while (tx[i] == 0.0)
i--;
n = __rem_pio2_large(tx,ty,(int)(ix>>20)-(0x3ff+23),i+1,1);
if (sign) {
y[0] = -ty[0];
y[1] = -ty[1];
return -n;
}
y[0] = ty[0];
y[1] = ty[1];
return n;
}

442
external/musl/__rem_pio2_large.c vendored Normal file
View File

@ -0,0 +1,442 @@
/* origin: FreeBSD /usr/src/lib/msun/src/k_rem_pio2.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __rem_pio2_large(x,y,e0,nx,prec)
* double x[],y[]; int e0,nx,prec;
*
* __rem_pio2_large return the last three digits of N with
* y = x - N*pi/2
* so that |y| < pi/2.
*
* The method is to compute the integer (mod 8) and fraction parts of
* (2/pi)*x without doing the full multiplication. In general we
* skip the part of the product that are known to be a huge integer (
* more accurately, = 0 mod 8 ). Thus the number of operations are
* independent of the exponent of the input.
*
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
*
* Input parameters:
* x[] The input value (must be positive) is broken into nx
* pieces of 24-bit integers in double precision format.
* x[i] will be the i-th 24 bit of x. The scaled exponent
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
* match x's up to 24 bits.
*
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
* e0 = ilogb(z)-23
* z = scalbn(z,-e0)
* for i = 0,1,2
* x[i] = floor(z)
* z = (z-x[i])*2**24
*
*
* y[] ouput result in an array of double precision numbers.
* The dimension of y[] is:
* 24-bit precision 1
* 53-bit precision 2
* 64-bit precision 2
* 113-bit precision 3
* The actual value is the sum of them. Thus for 113-bit
* precison, one may have to do something like:
*
* long double t,w,r_head, r_tail;
* t = (long double)y[2] + (long double)y[1];
* w = (long double)y[0];
* r_head = t+w;
* r_tail = w - (r_head - t);
*
* e0 The exponent of x[0]. Must be <= 16360 or you need to
* expand the ipio2 table.
*
* nx dimension of x[]
*
* prec an integer indicating the precision:
* 0 24 bits (single)
* 1 53 bits (double)
* 2 64 bits (extended)
* 3 113 bits (quad)
*
* External function:
* double scalbn(), floor();
*
*
* Here is the description of some local variables:
*
* jk jk+1 is the initial number of terms of ipio2[] needed
* in the computation. The minimum and recommended value
* for jk is 3,4,4,6 for single, double, extended, and quad.
* jk+1 must be 2 larger than you might expect so that our
* recomputation test works. (Up to 24 bits in the integer
* part (the 24 bits of it that we compute) and 23 bits in
* the fraction part may be lost to cancelation before we
* recompute.)
*
* jz local integer variable indicating the number of
* terms of ipio2[] used.
*
* jx nx - 1
*
* jv index for pointing to the suitable ipio2[] for the
* computation. In general, we want
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
* is an integer. Thus
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
* Hence jv = max(0,(e0-3)/24).
*
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
*
* q[] double array with integral value, representing the
* 24-bits chunk of the product of x and 2/pi.
*
* q0 the corresponding exponent of q[0]. Note that the
* exponent for q[i] would be q0-24*i.
*
* PIo2[] double precision array, obtained by cutting pi/2
* into 24 bits chunks.
*
* f[] ipio2[] in floating point
*
* iq[] integer array by breaking up q[] in 24-bits chunk.
*
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
*
* ih integer. If >0 it indicates q[] is >= 0.5, hence
* it also indicates the *sign* of the result.
*
*/
/*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "libm.h"
static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
/*
* Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
*
* integer array, contains the (24*i)-th to (24*i+23)-th
* bit of 2/pi after binary point. The corresponding
* floating value is
*
* ipio2[i] * 2^(-24(i+1)).
*
* NB: This table must have at least (e0-3)/24 + jk terms.
* For quad precision (e0 <= 16360, jk = 6), this is 686.
*/
static const int32_t ipio2[] = {
0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
#if LDBL_MAX_EXP > 1024
0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
#endif
};
static const double PIo2[] = {
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
};
int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec)
{
int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
double z,fw,f[20],fq[20],q[20];
/* initialize jk*/
jk = init_jk[prec];
jp = jk;
/* determine jx,jv,q0, note that 3>q0 */
jx = nx-1;
jv = (e0-3)/24; if(jv<0) jv=0;
q0 = e0-24*(jv+1);
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
j = jv-jx; m = jx+jk;
for (i=0; i<=m; i++,j++)
f[i] = j<0 ? 0.0 : (double)ipio2[j];
/* compute q[0],q[1],...q[jk] */
for (i=0; i<=jk; i++) {
for (j=0,fw=0.0; j<=jx; j++)
fw += x[j]*f[jx+i-j];
q[i] = fw;
}
jz = jk;
recompute:
/* distill q[] into iq[] reversingly */
for (i=0,j=jz,z=q[jz]; j>0; i++,j--) {
fw = (double)(int32_t)(0x1p-24*z);
iq[i] = (int32_t)(z - 0x1p24*fw);
z = q[j-1]+fw;
}
/* compute n */
z = scalbn(z,q0); /* actual value of z */
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
n = (int32_t)z;
z -= (double)n;
ih = 0;
if (q0 > 0) { /* need iq[jz-1] to determine n */
i = iq[jz-1]>>(24-q0); n += i;
iq[jz-1] -= i<<(24-q0);
ih = iq[jz-1]>>(23-q0);
}
else if (q0 == 0) ih = iq[jz-1]>>23;
else if (z >= 0.5) ih = 2;
if (ih > 0) { /* q > 0.5 */
n += 1; carry = 0;
for (i=0; i<jz; i++) { /* compute 1-q */
j = iq[i];
if (carry == 0) {
if (j != 0) {
carry = 1;
iq[i] = 0x1000000 - j;
}
} else
iq[i] = 0xffffff - j;
}
if (q0 > 0) { /* rare case: chance is 1 in 12 */
switch(q0) {
case 1:
iq[jz-1] &= 0x7fffff; break;
case 2:
iq[jz-1] &= 0x3fffff; break;
}
}
if (ih == 2) {
z = 1.0 - z;
if (carry != 0)
z -= scalbn(1.0,q0);
}
}
/* check if recomputation is needed */
if (z == 0.0) {
j = 0;
for (i=jz-1; i>=jk; i--) j |= iq[i];
if (j == 0) { /* need recomputation */
for (k=1; iq[jk-k]==0; k++); /* k = no. of terms needed */
for (i=jz+1; i<=jz+k; i++) { /* add q[jz+1] to q[jz+k] */
f[jx+i] = (double)ipio2[jv+i];
for (j=0,fw=0.0; j<=jx; j++)
fw += x[j]*f[jx+i-j];
q[i] = fw;
}
jz += k;
goto recompute;
}
}
/* chop off zero terms */
if (z == 0.0) {
jz -= 1;
q0 -= 24;
while (iq[jz] == 0) {
jz--;
q0 -= 24;
}
} else { /* break z into 24-bit if necessary */
z = scalbn(z,-q0);
if (z >= 0x1p24) {
fw = (double)(int32_t)(0x1p-24*z);
iq[jz] = (int32_t)(z - 0x1p24*fw);
jz += 1;
q0 += 24;
iq[jz] = (int32_t)fw;
} else
iq[jz] = (int32_t)z;
}
/* convert integer "bit" chunk to floating-point value */
fw = scalbn(1.0,q0);
for (i=jz; i>=0; i--) {
q[i] = fw*(double)iq[i];
fw *= 0x1p-24;
}
/* compute PIo2[0,...,jp]*q[jz,...,0] */
for(i=jz; i>=0; i--) {
for (fw=0.0,k=0; k<=jp && k<=jz-i; k++)
fw += PIo2[k]*q[i+k];
fq[jz-i] = fw;
}
/* compress fq[] into y[] */
switch(prec) {
case 0:
fw = 0.0;
for (i=jz; i>=0; i--)
fw += fq[i];
y[0] = ih==0 ? fw : -fw;
break;
case 1:
case 2:
fw = 0.0;
for (i=jz; i>=0; i--)
fw += fq[i];
// TODO: drop excess precision here once double_t is used
fw = (double)fw;
y[0] = ih==0 ? fw : -fw;
fw = fq[0]-fw;
for (i=1; i<=jz; i++)
fw += fq[i];
y[1] = ih==0 ? fw : -fw;
break;
case 3: /* painful */
for (i=jz; i>0; i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (i=jz; i>1; i--) {
fw = fq[i-1]+fq[i];
fq[i] += fq[i-1]-fw;
fq[i-1] = fw;
}
for (fw=0.0,i=jz; i>=2; i--)
fw += fq[i];
if (ih==0) {
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
} else {
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
}
}
return n&7;
}

64
external/musl/__sin.c vendored Normal file
View File

@ -0,0 +1,64 @@
/* origin: FreeBSD /usr/src/lib/msun/src/k_sin.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __sin( x, y, iy)
* kernel sin function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
* Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
*
* Algorithm
* 1. Since sin(-x) = -sin(x), we need only to consider positive x.
* 2. Callers must return sin(-0) = -0 without calling here since our
* odd polynomial is not evaluated in a way that preserves -0.
* Callers may do the optimization sin(x) ~ x for tiny x.
* 3. sin(x) is approximated by a polynomial of degree 13 on
* [0,pi/4]
* 3 13
* sin(x) ~ x + S1*x + ... + S6*x
* where
*
* |sin(x) 2 4 6 8 10 12 | -58
* |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
* | x |
*
* 4. sin(x+y) = sin(x) + sin'(x')*y
* ~ sin(x) + (1-x*x/2)*y
* For better accuracy, let
* 3 2 2 2 2
* r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
* then 3 2
* sin(x) = x + (S1*x + (x *(r-y/2)+y))
*/
#include "libm.h"
static const double
S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
double __sin(double x, double y, int iy)
{
double_t z,r,v,w;
z = x*x;
w = z*z;
r = S2 + z*(S3 + z*S4) + z*w*(S5 + z*S6);
v = z*x;
if (iy == 0)
return x + v*(S1 + z*r);
else
return x - ((z*(0.5*y - v*r) - y) - v*S1);
}

79
external/musl/cos.c vendored Normal file
View File

@ -0,0 +1,79 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_cos.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* cos(x)
* Return cosine function of x.
*
* kernel function:
* __sin ... sine function on [-pi/4,pi/4]
* __cos ... cosine function on [-pi/4,pi/4]
* __rem_pio2 ... argument reduction routine
*
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* ----------------------------------------------------------
*
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
*
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
*/
#include "libm.h"
double __cdecl cos(double x)
{
double y[2];
uint32_t ix;
unsigned n;
GET_HIGH_WORD(ix, x);
ix &= 0x7fffffff;
/* |x| ~< pi/4 */
if (ix <= 0x3fe921fb) {
if (ix < 0x3e46a09e) { /* |x| < 2**-27 * sqrt(2) */
/* raise inexact if x!=0 */
FORCE_EVAL(x + 0x1p120f);
return 1.0;
}
return __cos(x, 0);
}
/* cos(Inf or NaN) is NaN */
if (isinf(x))
return math_error(_DOMAIN, "cos", x, 0, x - x);
if (ix >= 0x7ff00000)
return x-x;
/* argument reduction */
n = __rem_pio2(x, y);
switch (n&3) {
case 0: return __cos(y[0], y[1]);
case 1: return -__sin(y[0], y[1], 1);
case 2: return -__cos(y[0], y[1]);
default:
return __sin(y[0], y[1], 1);
}
}

130
external/musl/exp2.c vendored Normal file
View File

@ -0,0 +1,130 @@
/*
* Double-precision 2^x function.
*
* Copyright (c) 2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#include <math.h>
#include <stdint.h>
#include "libm.h"
#include "exp_data.h"
#define N (1 << EXP_TABLE_BITS)
#define Shift __exp_data.exp2_shift
#define T __exp_data.tab
#define C1 __exp_data.exp2_poly[0]
#define C2 __exp_data.exp2_poly[1]
#define C3 __exp_data.exp2_poly[2]
#define C4 __exp_data.exp2_poly[3]
#define C5 __exp_data.exp2_poly[4]
/* Handle cases that may overflow or underflow when computing the result that
is scale*(1+TMP) without intermediate rounding. The bit representation of
scale is in SBITS, however it has a computed exponent that may have
overflown into the sign bit so that needs to be adjusted before using it as
a double. (int32_t)KI is the k used in the argument reduction and exponent
adjustment of scale, positive k here means the result may overflow and
negative k means the result may underflow. */
static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
{
double_t scale, y;
if ((ki & 0x80000000) == 0) {
/* k > 0, the exponent of scale might have overflowed by 1. */
sbits -= 1ull << 52;
scale = asdouble(sbits);
y = 2 * (scale + scale * tmp);
return eval_as_double(y);
}
/* k < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
scale = asdouble(sbits);
y = scale + scale * tmp;
if (y < 1.0) {
/* Round y to the right precision before scaling it into the subnormal
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double_t hi, lo;
lo = scale - y + scale * tmp;
hi = 1.0 + y;
lo = 1.0 - hi + y + lo;
y = eval_as_double(hi + lo) - 1.0;
/* Avoid -0.0 with downward rounding. */
if (WANT_ROUNDING && y == 0.0)
y = 0.0;
/* The underflow exception needs to be signaled explicitly. */
fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022);
}
y = 0x1p-1022 * y;
return eval_as_double(y);
}
/* Top 12 bits of a double (sign and exponent bits). */
static inline uint32_t top12(double x)
{
return asuint64(x) >> 52;
}
double __cdecl exp2(double x)
{
uint32_t abstop;
uint64_t ki, idx, top, sbits;
double_t kd, r, r2, scale, tail, tmp;
abstop = top12(x) & 0x7ff;
if (predict_false(abstop - top12(0x1p-54) >= top12(512.0) - top12(0x1p-54))) {
if (abstop - top12(0x1p-54) >= 0x80000000)
/* Avoid spurious underflow for tiny x. */
/* Note: 0 is common input. */
return WANT_ROUNDING ? 1.0 + x : 1.0;
if (abstop >= top12(1024.0)) {
if (asuint64(x) == asuint64(-INFINITY))
return 0.0;
if (abstop >= top12(INFINITY))
return 1.0 + x;
if (!(asuint64(x) >> 63)) {
errno = ERANGE;
return fp_barrier(DBL_MAX) * DBL_MAX;
}
else if (x <= -2147483648.0) {
fp_barrier(x + 0x1p120f);
return 0;
}
else if (asuint64(x) >= asuint64(-1075.0)) {
errno = ERANGE;
fp_barrier(x + 0x1p120f);
return 0;
}
}
if (2 * asuint64(x) > 2 * asuint64(928.0))
/* Large x is special cased below. */
abstop = 0;
}
/* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)]. */
/* x = k/N + r, with int k and r in [-1/2N, 1/2N]. */
kd = eval_as_double(x + Shift);
ki = asuint64(kd); /* k. */
kd -= Shift; /* k/N for int k. */
r = x - kd;
/* 2^(k/N) ~= scale * (1 + tail). */
idx = 2 * (ki % N);
top = ki << (52 - EXP_TABLE_BITS);
tail = asdouble(T[idx]);
/* This is only a valid scale when -1023*N < k < 1024*N. */
sbits = T[idx + 1] + top;
/* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1). */
/* Evaluation is optimized assuming superscalar pipelined execution. */
r2 = r * r;
/* Without fma the worst case error is 0.5/N ulp larger. */
/* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp. */
tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
if (predict_false(abstop == 0))
return specialcase(tmp, sbits, ki);
scale = asdouble(sbits);
/* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
is no spurious underflow here even without fma. */
return eval_as_double(scale + scale * tmp);
}

182
external/musl/exp_data.c vendored Normal file
View File

@ -0,0 +1,182 @@
/*
* Shared data between exp, exp2 and pow.
*
* Copyright (c) 2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#include "exp_data.h"
#define N (1 << EXP_TABLE_BITS)
const struct exp_data __exp_data = {
// N/ln2
.invln2N = 0x1.71547652b82fep0 * N,
// -ln2/N
.negln2hiN = -0x1.62e42fefa0000p-8,
.negln2loN = -0x1.cf79abc9e3b3ap-47,
// Used for rounding when !TOINT_INTRINSICS
#if EXP_USE_TOINT_NARROW
.shift = 0x1800000000.8p0,
#else
.shift = 0x1.8p52,
#endif
// exp polynomial coefficients.
.poly = {
// abs error: 1.555*2^-66
// ulp error: 0.509 (0.511 without fma)
// if |x| < ln2/256+eps
// abs error if |x| < ln2/256+0x1p-15: 1.09*2^-65
// abs error if |x| < ln2/128: 1.7145*2^-56
0x1.ffffffffffdbdp-2,
0x1.555555555543cp-3,
0x1.55555cf172b91p-5,
0x1.1111167a4d017p-7,
},
.exp2_shift = 0x1.8p52 / N,
// exp2 polynomial coefficients.
.exp2_poly = {
// abs error: 1.2195*2^-65
// ulp error: 0.507 (0.511 without fma)
// if |x| < 1/256
// abs error if |x| < 1/128: 1.9941*2^-56
0x1.62e42fefa39efp-1,
0x1.ebfbdff82c424p-3,
0x1.c6b08d70cf4b5p-5,
0x1.3b2abd24650ccp-7,
0x1.5d7e09b4e3a84p-10,
},
// 2^(k/N) ~= H[k]*(1 + T[k]) for int k in [0,N)
// tab[2*k] = asuint64(T[k])
// tab[2*k+1] = asuint64(H[k]) - (k << 52)/N
.tab = {
0x0, 0x3ff0000000000000,
0x3c9b3b4f1a88bf6e, 0x3feff63da9fb3335,
0xbc7160139cd8dc5d, 0x3fefec9a3e778061,
0xbc905e7a108766d1, 0x3fefe315e86e7f85,
0x3c8cd2523567f613, 0x3fefd9b0d3158574,
0xbc8bce8023f98efa, 0x3fefd06b29ddf6de,
0x3c60f74e61e6c861, 0x3fefc74518759bc8,
0x3c90a3e45b33d399, 0x3fefbe3ecac6f383,
0x3c979aa65d837b6d, 0x3fefb5586cf9890f,
0x3c8eb51a92fdeffc, 0x3fefac922b7247f7,
0x3c3ebe3d702f9cd1, 0x3fefa3ec32d3d1a2,
0xbc6a033489906e0b, 0x3fef9b66affed31b,
0xbc9556522a2fbd0e, 0x3fef9301d0125b51,
0xbc5080ef8c4eea55, 0x3fef8abdc06c31cc,
0xbc91c923b9d5f416, 0x3fef829aaea92de0,
0x3c80d3e3e95c55af, 0x3fef7a98c8a58e51,
0xbc801b15eaa59348, 0x3fef72b83c7d517b,
0xbc8f1ff055de323d, 0x3fef6af9388c8dea,
0x3c8b898c3f1353bf, 0x3fef635beb6fcb75,
0xbc96d99c7611eb26, 0x3fef5be084045cd4,
0x3c9aecf73e3a2f60, 0x3fef54873168b9aa,
0xbc8fe782cb86389d, 0x3fef4d5022fcd91d,
0x3c8a6f4144a6c38d, 0x3fef463b88628cd6,
0x3c807a05b0e4047d, 0x3fef3f49917ddc96,
0x3c968efde3a8a894, 0x3fef387a6e756238,
0x3c875e18f274487d, 0x3fef31ce4fb2a63f,
0x3c80472b981fe7f2, 0x3fef2b4565e27cdd,
0xbc96b87b3f71085e, 0x3fef24dfe1f56381,
0x3c82f7e16d09ab31, 0x3fef1e9df51fdee1,
0xbc3d219b1a6fbffa, 0x3fef187fd0dad990,
0x3c8b3782720c0ab4, 0x3fef1285a6e4030b,
0x3c6e149289cecb8f, 0x3fef0cafa93e2f56,
0x3c834d754db0abb6, 0x3fef06fe0a31b715,
0x3c864201e2ac744c, 0x3fef0170fc4cd831,
0x3c8fdd395dd3f84a, 0x3feefc08b26416ff,
0xbc86a3803b8e5b04, 0x3feef6c55f929ff1,
0xbc924aedcc4b5068, 0x3feef1a7373aa9cb,
0xbc9907f81b512d8e, 0x3feeecae6d05d866,
0xbc71d1e83e9436d2, 0x3feee7db34e59ff7,
0xbc991919b3ce1b15, 0x3feee32dc313a8e5,
0x3c859f48a72a4c6d, 0x3feedea64c123422,
0xbc9312607a28698a, 0x3feeda4504ac801c,
0xbc58a78f4817895b, 0x3feed60a21f72e2a,
0xbc7c2c9b67499a1b, 0x3feed1f5d950a897,
0x3c4363ed60c2ac11, 0x3feece086061892d,
0x3c9666093b0664ef, 0x3feeca41ed1d0057,
0x3c6ecce1daa10379, 0x3feec6a2b5c13cd0,
0x3c93ff8e3f0f1230, 0x3feec32af0d7d3de,
0x3c7690cebb7aafb0, 0x3feebfdad5362a27,
0x3c931dbdeb54e077, 0x3feebcb299fddd0d,
0xbc8f94340071a38e, 0x3feeb9b2769d2ca7,
0xbc87deccdc93a349, 0x3feeb6daa2cf6642,
0xbc78dec6bd0f385f, 0x3feeb42b569d4f82,
0xbc861246ec7b5cf6, 0x3feeb1a4ca5d920f,
0x3c93350518fdd78e, 0x3feeaf4736b527da,
0x3c7b98b72f8a9b05, 0x3feead12d497c7fd,
0x3c9063e1e21c5409, 0x3feeab07dd485429,
0x3c34c7855019c6ea, 0x3feea9268a5946b7,
0x3c9432e62b64c035, 0x3feea76f15ad2148,
0xbc8ce44a6199769f, 0x3feea5e1b976dc09,
0xbc8c33c53bef4da8, 0x3feea47eb03a5585,
0xbc845378892be9ae, 0x3feea34634ccc320,
0xbc93cedd78565858, 0x3feea23882552225,
0x3c5710aa807e1964, 0x3feea155d44ca973,
0xbc93b3efbf5e2228, 0x3feea09e667f3bcd,
0xbc6a12ad8734b982, 0x3feea012750bdabf,
0xbc6367efb86da9ee, 0x3fee9fb23c651a2f,
0xbc80dc3d54e08851, 0x3fee9f7df9519484,
0xbc781f647e5a3ecf, 0x3fee9f75e8ec5f74,
0xbc86ee4ac08b7db0, 0x3fee9f9a48a58174,
0xbc8619321e55e68a, 0x3fee9feb564267c9,
0x3c909ccb5e09d4d3, 0x3feea0694fde5d3f,
0xbc7b32dcb94da51d, 0x3feea11473eb0187,
0x3c94ecfd5467c06b, 0x3feea1ed0130c132,
0x3c65ebe1abd66c55, 0x3feea2f336cf4e62,
0xbc88a1c52fb3cf42, 0x3feea427543e1a12,
0xbc9369b6f13b3734, 0x3feea589994cce13,
0xbc805e843a19ff1e, 0x3feea71a4623c7ad,
0xbc94d450d872576e, 0x3feea8d99b4492ed,
0x3c90ad675b0e8a00, 0x3feeaac7d98a6699,
0x3c8db72fc1f0eab4, 0x3feeace5422aa0db,
0xbc65b6609cc5e7ff, 0x3feeaf3216b5448c,
0x3c7bf68359f35f44, 0x3feeb1ae99157736,
0xbc93091fa71e3d83, 0x3feeb45b0b91ffc6,
0xbc5da9b88b6c1e29, 0x3feeb737b0cdc5e5,
0xbc6c23f97c90b959, 0x3feeba44cbc8520f,
0xbc92434322f4f9aa, 0x3feebd829fde4e50,
0xbc85ca6cd7668e4b, 0x3feec0f170ca07ba,
0x3c71affc2b91ce27, 0x3feec49182a3f090,
0x3c6dd235e10a73bb, 0x3feec86319e32323,
0xbc87c50422622263, 0x3feecc667b5de565,
0x3c8b1c86e3e231d5, 0x3feed09bec4a2d33,
0xbc91bbd1d3bcbb15, 0x3feed503b23e255d,
0x3c90cc319cee31d2, 0x3feed99e1330b358,
0x3c8469846e735ab3, 0x3feede6b5579fdbf,
0xbc82dfcd978e9db4, 0x3feee36bbfd3f37a,
0x3c8c1a7792cb3387, 0x3feee89f995ad3ad,
0xbc907b8f4ad1d9fa, 0x3feeee07298db666,
0xbc55c3d956dcaeba, 0x3feef3a2b84f15fb,
0xbc90a40e3da6f640, 0x3feef9728de5593a,
0xbc68d6f438ad9334, 0x3feeff76f2fb5e47,
0xbc91eee26b588a35, 0x3fef05b030a1064a,
0x3c74ffd70a5fddcd, 0x3fef0c1e904bc1d2,
0xbc91bdfbfa9298ac, 0x3fef12c25bd71e09,
0x3c736eae30af0cb3, 0x3fef199bdd85529c,
0x3c8ee3325c9ffd94, 0x3fef20ab5fffd07a,
0x3c84e08fd10959ac, 0x3fef27f12e57d14b,
0x3c63cdaf384e1a67, 0x3fef2f6d9406e7b5,
0x3c676b2c6c921968, 0x3fef3720dcef9069,
0xbc808a1883ccb5d2, 0x3fef3f0b555dc3fa,
0xbc8fad5d3ffffa6f, 0x3fef472d4a07897c,
0xbc900dae3875a949, 0x3fef4f87080d89f2,
0x3c74a385a63d07a7, 0x3fef5818dcfba487,
0xbc82919e2040220f, 0x3fef60e316c98398,
0x3c8e5a50d5c192ac, 0x3fef69e603db3285,
0x3c843a59ac016b4b, 0x3fef7321f301b460,
0xbc82d52107b43e1f, 0x3fef7c97337b9b5f,
0xbc892ab93b470dc9, 0x3fef864614f5a129,
0x3c74b604603a88d3, 0x3fef902ee78b3ff6,
0x3c83c5ec519d7271, 0x3fef9a51fbc74c83,
0xbc8ff7128fd391f0, 0x3fefa4afa2a490da,
0xbc8dae98e223747d, 0x3fefaf482d8e67f1,
0x3c8ec3bc41aa2008, 0x3fefba1bee615a27,
0x3c842b94c3a9eb32, 0x3fefc52b376bba97,
0x3c8a64a931d185ee, 0x3fefd0765b6e4540,
0xbc8e37bae43be3ed, 0x3fefdbfdad9cbe14,
0x3c77893b4d91cd9d, 0x3fefe7c1819e90d8,
0x3c5305c14160cc89, 0x3feff3c22b8f71f1,
},
};

26
external/musl/exp_data.h vendored Normal file
View File

@ -0,0 +1,26 @@
/*
* Copyright (c) 2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#ifndef _EXP_DATA_H
#define _EXP_DATA_H
#include <features.h>
#include <stdint.h>
#define EXP_TABLE_BITS 7
#define EXP_POLY_ORDER 5
#define EXP_USE_TOINT_NARROW 0
#define EXP2_POLY_ORDER 5
extern hidden const struct exp_data {
double invln2N;
double shift;
double negln2hiN;
double negln2loN;
double poly[4]; /* Last four coefficients. */
double exp2_shift;
double exp2_poly[EXP2_POLY_ORDER];
uint64_t tab[2*(1 << EXP_TABLE_BITS)];
} __exp_data;
#endif

202
external/musl/expm1.c vendored Normal file
View File

@ -0,0 +1,202 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* expm1(x)
* Returns exp(x)-1, the exponential of x minus 1.
*
* Method
* 1. Argument reduction:
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
*
* Here a correction term c will be computed to compensate
* the error in r when rounded to a floating-point number.
*
* 2. Approximating expm1(r) by a special rational function on
* the interval [0,0.34658]:
* Since
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
* we define R1(r*r) by
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
* That is,
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
* We use a special Remez algorithm on [0,0.347] to generate
* a polynomial of degree 5 in r*r to approximate R1. The
* maximum error of this polynomial approximation is bounded
* by 2**-61. In other words,
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
* where Q1 = -1.6666666666666567384E-2,
* Q2 = 3.9682539681370365873E-4,
* Q3 = -9.9206344733435987357E-6,
* Q4 = 2.5051361420808517002E-7,
* Q5 = -6.2843505682382617102E-9;
* z = r*r,
* with error bounded by
* | 5 | -61
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
* | |
*
* expm1(r) = exp(r)-1 is then computed by the following
* specific way which minimize the accumulation rounding error:
* 2 3
* r r [ 3 - (R1 + R1*r/2) ]
* expm1(r) = r + --- + --- * [--------------------]
* 2 2 [ 6 - r*(3 - R1*r/2) ]
*
* To compensate the error in the argument reduction, we use
* expm1(r+c) = expm1(r) + c + expm1(r)*c
* ~ expm1(r) + c + r*c
* Thus c+r*c will be added in as the correction terms for
* expm1(r+c). Now rearrange the term to avoid optimization
* screw up:
* ( 2 2 )
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
* ( )
*
* = r - E
* 3. Scale back to obtain expm1(x):
* From step 1, we have
* expm1(x) = either 2^k*[expm1(r)+1] - 1
* = or 2^k*[expm1(r) + (1-2^-k)]
* 4. Implementation notes:
* (A). To save one multiplication, we scale the coefficient Qi
* to Qi*2^i, and replace z by (x^2)/2.
* (B). To achieve maximum accuracy, we compute expm1(x) by
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
* (ii) if k=0, return r-E
* (iii) if k=-1, return 0.5*(r-E)-0.5
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
* else return 1.0+2.0*(r-E);
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
* (vii) return 2^k(1-((E+2^-k)-r))
*
* Special cases:
* expm1(INF) is INF, expm1(NaN) is NaN;
* expm1(-INF) is -1, and
* for finite argument, only expm1(0)=0 is exact.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Misc. info.
* For IEEE double
* if x > 7.09782712893383973096e+02 then expm1(x) overflow
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "libm.h"
static const double
o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
ln2_hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
ln2_lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
double __cdecl expm1(double x)
{
double_t y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
union {double f; uint64_t i;} u = {x};
uint32_t hx = u.i>>32 & 0x7fffffff;
int k, sign = u.i>>63;
/* filter out huge and non-finite argument */
if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */
if (isnan(x))
return x;
if (isinf(x))
return sign ? -1 : x;
if (sign)
return math_error(_UNDERFLOW, "exp", x, 0, -1);
if (x > o_threshold) {
return math_error(_OVERFLOW, "exp", x, 0, x * 0x1p1023);
}
}
/* argument reduction */
if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
if (!sign) {
hi = x - ln2_hi;
lo = ln2_lo;
k = 1;
} else {
hi = x + ln2_hi;
lo = -ln2_lo;
k = -1;
}
} else {
k = invln2*x + (sign ? -0.5 : 0.5);
t = k;
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
lo = t*ln2_lo;
}
x = hi-lo;
c = (hi-x)-lo;
} else if (hx < 0x3c900000) { /* |x| < 2**-54, return x */
if (hx < 0x00100000)
FORCE_EVAL((float)x);
return x;
} else
k = 0;
/* x is now in primary range */
hfx = 0.5*x;
hxs = x*hfx;
r1 = 1.0+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
t = 3.0-r1*hfx;
e = hxs*((r1-t)/(6.0 - x*t));
if (k == 0) /* c is 0 */
return x - (x*e-hxs);
e = x*(e-c) - c;
e -= hxs;
/* exp(x) ~ 2^k (x_reduced - e + 1) */
if (k == -1)
return 0.5*(x-e) - 0.5;
if (k == 1) {
if (x < -0.25)
return -2.0*(e-(x+0.5));
return 1.0+2.0*(x-e);
}
u.i = (uint64_t)(0x3ff + k)<<52; /* 2^k */
twopk = u.f;
if (k < 0 || k > 56) { /* suffice to return exp(x)-1 */
y = x - e + 1.0;
if (k == 1024)
y = y*2.0*0x1p1023;
else
y = y*twopk;
return y - 1.0;
}
u.i = (uint64_t)(0x3ff - k)<<52; /* 2^-k */
if (k < 20)
y = (x-e+(1-u.f))*twopk;
else
y = (x-(e+u.f)+1)*twopk;
return y;
}

23
external/musl/frexp.c vendored Normal file
View File

@ -0,0 +1,23 @@
#include <math.h>
#include <stdint.h>
double __cdecl frexp(double x, int *e)
{
union { double d; uint64_t i; } y = { x };
int ee = y.i>>52 & 0x7ff;
if (!ee) {
if (x) {
x = frexp(x*0x1p64, e);
*e -= 64;
} else *e = 0;
return x;
} else if (ee == 0x7ff) {
return x;
}
*e = ee - 0x3fe;
y.i &= 0x800fffffffffffffull;
y.i |= 0x3fe0000000000000ull;
return y.d;
}

8
external/musl/internal/features.h vendored Normal file
View File

@ -0,0 +1,8 @@
#ifndef FEATURES_H
#define FEATURES_H
#define weak
#define hidden
#define weak_alias(old, new)
#endif

282
external/musl/internal/libm.h vendored Normal file
View File

@ -0,0 +1,282 @@
#ifndef _LIBM_H
#define _LIBM_H
#include <stdint.h>
#include <float.h>
#include <math.h>
#include <errno.h>
#include <features.h>
typedef float float_t;
typedef double double_t;
hidden double math_error(int type, const char *name, double arg1, double arg2, double retval);
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __LITTLE_ENDIAN
union ldshape {
long double f;
struct {
uint64_t m;
uint16_t se;
} i;
};
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __BIG_ENDIAN
/* This is the m68k variant of 80-bit long double, and this definition only works
* on archs where the alignment requirement of uint64_t is <= 4. */
union ldshape {
long double f;
struct {
uint16_t se;
uint16_t pad;
uint64_t m;
} i;
};
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __LITTLE_ENDIAN
union ldshape {
long double f;
struct {
uint64_t lo;
uint32_t mid;
uint16_t top;
uint16_t se;
} i;
struct {
uint64_t lo;
uint64_t hi;
} i2;
};
#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 && __BYTE_ORDER == __BIG_ENDIAN
union ldshape {
long double f;
struct {
uint16_t se;
uint16_t top;
uint32_t mid;
uint64_t lo;
} i;
struct {
uint64_t hi;
uint64_t lo;
} i2;
};
#else
#error Unsupported long double representation
#endif
/* Support non-nearest rounding mode. */
#define WANT_ROUNDING 1
/* Support signaling NaNs. */
#define WANT_SNAN 0
#if WANT_SNAN
#error SNaN is unsupported
#else
#define issignalingf_inline(x) 0
#define issignaling_inline(x) 0
#endif
#ifndef TOINT_INTRINSICS
#define TOINT_INTRINSICS 0
#endif
#if TOINT_INTRINSICS
/* Round x to nearest int in all rounding modes, ties have to be rounded
consistently with converttoint so the results match. If the result
would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */
static double_t roundtoint(double_t);
/* Convert x to nearest int in all rounding modes, ties have to be rounded
consistently with roundtoint. If the result is not representible in an
int32_t then the semantics is unspecified. */
static int32_t converttoint(double_t);
#endif
/* Helps static branch prediction so hot path can be better optimized. */
#ifdef __GNUC__
#define predict_true(x) __builtin_expect(!!(x), 1)
#define predict_false(x) __builtin_expect(x, 0)
#else
#define predict_true(x) (x)
#define predict_false(x) (x)
#endif
/* Evaluate an expression as the specified type. With standard excess
precision handling a type cast or assignment is enough (with
-ffloat-store an assignment is required, in old compilers argument
passing and return statement may not drop excess precision).
If compiled without -ffloat-store or -fexcess-precision=standard,
an extra volatile qualifier here will force limiting the precision. */
static inline float eval_as_float(float x)
{
volatile float y = x;
return y;
}
static inline double eval_as_double(double x)
{
volatile double y = x;
return y;
}
/* fp_barrier returns its input, but limits code transformations
as if it had a side-effect (e.g. observable io) and returned
an arbitrary value. */
#ifndef fp_barrierf
#define fp_barrierf fp_barrierf
static inline float fp_barrierf(float x)
{
volatile float y = x;
return y;
}
#endif
#ifndef fp_barrier
#define fp_barrier fp_barrier
static inline double fp_barrier(double x)
{
volatile double y = x;
return y;
}
#endif
#ifndef fp_barrierl
#define fp_barrierl fp_barrierl
static inline long double fp_barrierl(long double x)
{
volatile long double y = x;
return y;
}
#endif
/* fp_force_eval ensures that the input value is computed when that's
otherwise unused. To prevent the constant folding of the input
expression, an additional fp_barrier may be needed or a compilation
mode that does so (e.g. -frounding-math in gcc). Then it can be
used to evaluate an expression for its fenv side-effects only. */
#ifndef fp_force_evalf
#define fp_force_evalf fp_force_evalf
static inline void fp_force_evalf(float x)
{
volatile float y;
y = x;
}
#endif
#ifndef fp_force_eval
#define fp_force_eval fp_force_eval
static inline void fp_force_eval(double x)
{
volatile double y;
y = x;
}
#endif
#ifndef fp_force_evall
#define fp_force_evall fp_force_evall
static inline void fp_force_evall(long double x)
{
volatile long double y;
y = x;
}
#endif
#define FORCE_EVAL(x) do { \
if (sizeof(x) == sizeof(float)) { \
fp_force_evalf(x); \
} else if (sizeof(x) == sizeof(double)) { \
fp_force_eval(x); \
} else { \
fp_force_evall(x); \
} \
} while(0)
#define asuint(f) ((union{float _f; uint32_t _i;}){f})._i
#define asfloat(i) ((union{uint32_t _i; float _f;}){i})._f
#define asuint64(f) ((union{double _f; uint64_t _i;}){f})._i
#define asdouble(i) ((union{uint64_t _i; double _f;}){i})._f
#define EXTRACT_WORDS(hi,lo,d) \
do { \
uint64_t __u = asuint64(d); \
(hi) = __u >> 32; \
(lo) = (uint32_t)__u; \
} while (0)
#define GET_HIGH_WORD(hi,d) \
do { \
(hi) = asuint64(d) >> 32; \
} while (0)
#define GET_LOW_WORD(lo,d) \
do { \
(lo) = (uint32_t)asuint64(d); \
} while (0)
#define INSERT_WORDS(d,hi,lo) \
do { \
(d) = asdouble(((uint64_t)(hi)<<32) | (uint32_t)(lo)); \
} while (0)
#define SET_HIGH_WORD(d,hi) \
INSERT_WORDS(d, hi, (uint32_t)asuint64(d))
#define SET_LOW_WORD(d,lo) \
INSERT_WORDS(d, asuint64(d)>>32, lo)
#define GET_FLOAT_WORD(w,d) \
do { \
(w) = asuint(d); \
} while (0)
#define SET_FLOAT_WORD(d,w) \
do { \
(d) = asfloat(w); \
} while (0)
hidden int __rem_pio2_large(double*,double*,int,int,int);
hidden int __rem_pio2(double,double*);
hidden double __sin(double,double,int);
hidden double __cos(double,double);
hidden double __tan(double,double,int);
hidden double __expo2(double,double);
hidden int __rem_pio2f(float,double*);
hidden float __sindf(double);
hidden float __cosdf(double);
hidden float __tandf(double,int);
hidden float __expo2f(float,float);
hidden int __rem_pio2l(long double, long double *);
hidden long double __sinl(long double, long double, int);
hidden long double __cosl(long double, long double);
hidden long double __tanl(long double, long double, int);
hidden long double __polevll(long double, const long double *, int);
hidden long double __p1evll(long double, const long double *, int);
extern int __signgam;
hidden double __lgamma_r(double, int *);
hidden float __lgammaf_r(float, int *);
/* error handling functions */
hidden float __math_xflowf(uint32_t, float);
hidden float __math_uflowf(uint32_t);
hidden float __math_oflowf(uint32_t);
hidden float __math_divzerof(uint32_t);
hidden float __math_invalidf(float);
hidden double __math_xflow(uint32_t, double);
hidden double __math_uflow(uint32_t);
hidden double __math_oflow(uint32_t);
hidden double __math_divzero(uint32_t);
hidden double __math_invalid(double);
#if LDBL_MANT_DIG != DBL_MANT_DIG
hidden long double __math_invalidl(long double);
#endif
#endif

6
external/musl/ldexp.c vendored Normal file
View File

@ -0,0 +1,6 @@
#include <math.h>
double __cdecl ldexp(double x, int n)
{
return scalbn(x, n);
}

126
external/musl/log1p.c vendored Normal file
View File

@ -0,0 +1,126 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* double log1p(double x)
* Return the natural logarithm of 1+x.
*
* Method :
* 1. Argument Reduction: find k and f such that
* 1+x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* Note. If k=0, then f=x is exact. However, if k!=0, then f
* may not be representable exactly. In that case, a correction
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
* and add back the correction term c/u.
* (Note: when x > 2**53, one can simply return log(x))
*
* 2. Approximation of log(1+f): See log.c
*
* 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
*
* Special cases:
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
* log1p(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*
* Note: Assuming log() return accurate answer, the following
* algorithm can be used to compute log1p(x) to within a few ULP:
*
* u = 1+x;
* if(u==1.0) return x ; else
* return log(u)*(x/(u-1.0));
*
* See HP-15C Advanced Functions Handbook, p.193.
*/
#include "libm.h"
static const double
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
double __cdecl log1p(double x)
{
union {double f; uint64_t i;} u = {x};
double_t hfsq,f,c,s,z,R,w,t1,t2,dk;
uint32_t hx,hu;
int k;
hx = u.i>>32;
k = 1;
if (hx < 0x3fda827a || hx>>31) { /* 1+x < sqrt(2)+ */
if (hx >= 0xbff00000) { /* x <= -1.0 */
if (x == -1) {
errno = ERANGE;
return x/0.0; /* log1p(-1) = -inf */
}
errno = EDOM;
return (x-x)/0.0; /* log1p(x<-1) = NaN */
}
if (hx<<1 < 0x3ca00000<<1) { /* |x| < 2**-53 */
fp_barrier(x + 0x1p120f);
/* underflow if subnormal */
if ((hx&0x7ff00000) == 0)
FORCE_EVAL((float)x);
return x;
}
if (hx <= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
k = 0;
c = 0;
f = x;
}
} else if (hx >= 0x7ff00000)
return x;
if (k) {
u.f = 1 + x;
hu = u.i>>32;
hu += 0x3ff00000 - 0x3fe6a09e;
k = (int)(hu>>20) - 0x3ff;
/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
if (k < 54) {
c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
c /= u.f;
} else
c = 0;
/* reduce u into [sqrt(2)/2, sqrt(2)] */
hu = (hu&0x000fffff) + 0x3fe6a09e;
u.i = (uint64_t)hu<<32 | (u.i&0xffffffff);
f = u.f - 1;
}
hfsq = 0.5*f*f;
s = f/(2.0+f);
z = s*s;
w = z*z;
t1 = w*(Lg2+w*(Lg4+w*Lg6));
t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
R = t2 + t1;
dk = k;
return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
}

128
external/musl/log2.c vendored Normal file
View File

@ -0,0 +1,128 @@
/*
* Double-precision log2(x) function.
*
* Copyright (c) 2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#include <math.h>
#include <stdint.h>
#include "libm.h"
#include "log2_data.h"
#define T __log2_data.tab
#define T2 __log2_data.tab2
#define B __log2_data.poly1
#define A __log2_data.poly
#define InvLn2hi __log2_data.invln2hi
#define InvLn2lo __log2_data.invln2lo
#define N (1 << LOG2_TABLE_BITS)
#define OFF 0x3fe6000000000000
/* Top 16 bits of a double. */
static inline uint32_t top16(double x)
{
return asuint64(x) >> 48;
}
double __cdecl log2(double x)
{
double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
uint64_t ix, iz, tmp;
uint32_t top;
int k, i;
ix = asuint64(x);
top = top16(x);
#define LO asuint64(1.0 - 0x1.5b51p-5)
#define HI asuint64(1.0 + 0x1.6ab2p-5)
if (predict_false(ix - LO < HI - LO)) {
/* Handle close to 1.0 inputs separately. */
/* Fix sign of zero with downward rounding when x==1. */
if (WANT_ROUNDING && predict_false(ix == asuint64(1.0)))
return 0;
r = x - 1.0;
#if __FP_FAST_FMA
hi = r * InvLn2hi;
lo = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -hi);
#else
double_t rhi, rlo;
rhi = asdouble(asuint64(r) & -1ULL << 32);
rlo = r - rhi;
hi = rhi * InvLn2hi;
lo = rlo * InvLn2hi + r * InvLn2lo;
#endif
r2 = r * r; /* rounding error: 0x1p-62. */
r4 = r2 * r2;
/* Worst-case error is less than 0.54 ULP (0.55 ULP without fma). */
p = r2 * (B[0] + r * B[1]);
y = hi + p;
lo += hi - y + p;
lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) +
r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9])));
y += lo;
return eval_as_double(y);
}
if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) {
/* x < 0x1p-1022 or inf or nan. */
if (ix * 2 == 0) {
errno = ERANGE;
return __math_divzero(1);
}
if (ix == asuint64(INFINITY)) /* log(inf) == inf. */
return x;
if ((top & 0x7ff0) == 0x7ff0 && (ix & 0xfffffffffffffULL))
return x;
if (top & 0x8000) {
errno = EDOM;
return __math_invalid(x);
}
/* x is subnormal, normalize it. */
ix = asuint64(x * 0x1p52);
ix -= 52ULL << 52;
}
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (52 - LOG2_TABLE_BITS)) % N;
k = (int64_t)tmp >> 52; /* arithmetic shift */
iz = ix - (tmp & 0xfffULL << 52);
invc = T[i].invc;
logc = T[i].logc;
z = asdouble(iz);
kd = (double_t)k;
/* log2(x) = log2(z/c) + log2(c) + k. */
/* r ~= z/c - 1, |r| < 1/(2*N). */
#if __FP_FAST_FMA
/* rounding error: 0x1p-55/N. */
r = __builtin_fma(z, invc, -1.0);
t1 = r * InvLn2hi;
t2 = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -t1);
#else
double_t rhi, rlo;
/* rounding error: 0x1p-55/N + 0x1p-65. */
r = (z - T2[i].chi - T2[i].clo) * invc;
rhi = asdouble(asuint64(r) & -1ULL << 32);
rlo = r - rhi;
t1 = rhi * InvLn2hi;
t2 = rlo * InvLn2hi + r * InvLn2lo;
#endif
/* hi + lo = r/ln2 + log2(c) + k. */
t3 = kd + logc;
hi = t3 + t1;
lo = t3 - hi + t1 + t2;
/* log2(r+1) = r/ln2 + r^2*poly(r). */
/* Evaluation is optimized assuming superscalar pipelined execution. */
r2 = r * r; /* rounding error: 0x1p-54/N^2. */
r4 = r2 * r2;
/* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma). */
p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]);
y = lo + r2 * p + hi;
return eval_as_double(y);
}

201
external/musl/log2_data.c vendored Normal file
View File

@ -0,0 +1,201 @@
/*
* Data for log2.
*
* Copyright (c) 2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#include "log2_data.h"
#define N (1 << LOG2_TABLE_BITS)
const struct log2_data __log2_data = {
// First coefficient: 0x1.71547652b82fe1777d0ffda0d24p0
.invln2hi = 0x1.7154765200000p+0,
.invln2lo = 0x1.705fc2eefa200p-33,
.poly1 = {
// relative error: 0x1.2fad8188p-63
// in -0x1.5b51p-5 0x1.6ab2p-5
-0x1.71547652b82fep-1,
0x1.ec709dc3a03f7p-2,
-0x1.71547652b7c3fp-2,
0x1.2776c50f05be4p-2,
-0x1.ec709dd768fe5p-3,
0x1.a61761ec4e736p-3,
-0x1.7153fbc64a79bp-3,
0x1.484d154f01b4ap-3,
-0x1.289e4a72c383cp-3,
0x1.0b32f285aee66p-3,
},
.poly = {
// relative error: 0x1.a72c2bf8p-58
// abs error: 0x1.67a552c8p-66
// in -0x1.f45p-8 0x1.f45p-8
-0x1.71547652b8339p-1,
0x1.ec709dc3a04bep-2,
-0x1.7154764702ffbp-2,
0x1.2776c50034c48p-2,
-0x1.ec7b328ea92bcp-3,
0x1.a6225e117f92ep-3,
},
/* Algorithm:
x = 2^k z
log2(x) = k + log2(c) + log2(z/c)
log2(z/c) = poly(z/c - 1)
where z is in [1.6p-1; 1.6p0] which is split into N subintervals and z falls
into the ith one, then table entries are computed as
tab[i].invc = 1/c
tab[i].logc = (double)log2(c)
tab2[i].chi = (double)c
tab2[i].clo = (double)(c - (double)c)
where c is near the center of the subinterval and is chosen by trying +-2^29
floating point invc candidates around 1/center and selecting one for which
1) the rounding error in 0x1.8p10 + logc is 0,
2) the rounding error in z - chi - clo is < 0x1p-64 and
3) the rounding error in (double)log2(c) is minimized (< 0x1p-68).
Note: 1) ensures that k + logc can be computed without rounding error, 2)
ensures that z/c - 1 can be computed as (z - chi - clo)*invc with close to a
single rounding error when there is no fast fma for z*invc - 1, 3) ensures
that logc + poly(z/c - 1) has small error, however near x == 1 when
|log2(x)| < 0x1p-4, this is not enough so that is special cased. */
.tab = {
{0x1.724286bb1acf8p+0, -0x1.1095feecdb000p-1},
{0x1.6e1f766d2cca1p+0, -0x1.08494bd76d000p-1},
{0x1.6a13d0e30d48ap+0, -0x1.00143aee8f800p-1},
{0x1.661ec32d06c85p+0, -0x1.efec5360b4000p-2},
{0x1.623fa951198f8p+0, -0x1.dfdd91ab7e000p-2},
{0x1.5e75ba4cf026cp+0, -0x1.cffae0cc79000p-2},
{0x1.5ac055a214fb8p+0, -0x1.c043811fda000p-2},
{0x1.571ed0f166e1ep+0, -0x1.b0b67323ae000p-2},
{0x1.53909590bf835p+0, -0x1.a152f5a2db000p-2},
{0x1.5014fed61adddp+0, -0x1.9217f5af86000p-2},
{0x1.4cab88e487bd0p+0, -0x1.8304db0719000p-2},
{0x1.49539b4334feep+0, -0x1.74189f9a9e000p-2},
{0x1.460cbdfafd569p+0, -0x1.6552bb5199000p-2},
{0x1.42d664ee4b953p+0, -0x1.56b23a29b1000p-2},
{0x1.3fb01111dd8a6p+0, -0x1.483650f5fa000p-2},
{0x1.3c995b70c5836p+0, -0x1.39de937f6a000p-2},
{0x1.3991c4ab6fd4ap+0, -0x1.2baa1538d6000p-2},
{0x1.3698e0ce099b5p+0, -0x1.1d98340ca4000p-2},
{0x1.33ae48213e7b2p+0, -0x1.0fa853a40e000p-2},
{0x1.30d191985bdb1p+0, -0x1.01d9c32e73000p-2},
{0x1.2e025cab271d7p+0, -0x1.e857da2fa6000p-3},
{0x1.2b404cf13cd82p+0, -0x1.cd3c8633d8000p-3},
{0x1.288b02c7ccb50p+0, -0x1.b26034c14a000p-3},
{0x1.25e2263944de5p+0, -0x1.97c1c2f4fe000p-3},
{0x1.234563d8615b1p+0, -0x1.7d6023f800000p-3},
{0x1.20b46e33eaf38p+0, -0x1.633a71a05e000p-3},
{0x1.1e2eefdcda3ddp+0, -0x1.494f5e9570000p-3},
{0x1.1bb4a580b3930p+0, -0x1.2f9e424e0a000p-3},
{0x1.19453847f2200p+0, -0x1.162595afdc000p-3},
{0x1.16e06c0d5d73cp+0, -0x1.f9c9a75bd8000p-4},
{0x1.1485f47b7e4c2p+0, -0x1.c7b575bf9c000p-4},
{0x1.12358ad0085d1p+0, -0x1.960c60ff48000p-4},
{0x1.0fef00f532227p+0, -0x1.64ce247b60000p-4},
{0x1.0db2077d03a8fp+0, -0x1.33f78b2014000p-4},
{0x1.0b7e6d65980d9p+0, -0x1.0387d1a42c000p-4},
{0x1.0953efe7b408dp+0, -0x1.a6f9208b50000p-5},
{0x1.07325cac53b83p+0, -0x1.47a954f770000p-5},
{0x1.05197e40d1b5cp+0, -0x1.d23a8c50c0000p-6},
{0x1.03091c1208ea2p+0, -0x1.16a2629780000p-6},
{0x1.0101025b37e21p+0, -0x1.720f8d8e80000p-8},
{0x1.fc07ef9caa76bp-1, 0x1.6fe53b1500000p-7},
{0x1.f4465d3f6f184p-1, 0x1.11ccce10f8000p-5},
{0x1.ecc079f84107fp-1, 0x1.c4dfc8c8b8000p-5},
{0x1.e573a99975ae8p-1, 0x1.3aa321e574000p-4},
{0x1.de5d6f0bd3de6p-1, 0x1.918a0d08b8000p-4},
{0x1.d77b681ff38b3p-1, 0x1.e72e9da044000p-4},
{0x1.d0cb5724de943p-1, 0x1.1dcd2507f6000p-3},
{0x1.ca4b2dc0e7563p-1, 0x1.476ab03dea000p-3},
{0x1.c3f8ee8d6cb51p-1, 0x1.7074377e22000p-3},
{0x1.bdd2b4f020c4cp-1, 0x1.98ede8ba94000p-3},
{0x1.b7d6c006015cap-1, 0x1.c0db86ad2e000p-3},
{0x1.b20366e2e338fp-1, 0x1.e840aafcee000p-3},
{0x1.ac57026295039p-1, 0x1.0790ab4678000p-2},
{0x1.a6d01bc2731ddp-1, 0x1.1ac056801c000p-2},
{0x1.a16d3bc3ff18bp-1, 0x1.2db11d4fee000p-2},
{0x1.9c2d14967feadp-1, 0x1.406464ec58000p-2},
{0x1.970e4f47c9902p-1, 0x1.52dbe093af000p-2},
{0x1.920fb3982bcf2p-1, 0x1.651902050d000p-2},
{0x1.8d30187f759f1p-1, 0x1.771d2cdeaf000p-2},
{0x1.886e5ebb9f66dp-1, 0x1.88e9c857d9000p-2},
{0x1.83c97b658b994p-1, 0x1.9a80155e16000p-2},
{0x1.7f405ffc61022p-1, 0x1.abe186ed3d000p-2},
{0x1.7ad22181415cap-1, 0x1.bd0f2aea0e000p-2},
{0x1.767dcf99eff8cp-1, 0x1.ce0a43dbf4000p-2},
},
#if !__FP_FAST_FMA
.tab2 = {
{0x1.6200012b90a8ep-1, 0x1.904ab0644b605p-55},
{0x1.66000045734a6p-1, 0x1.1ff9bea62f7a9p-57},
{0x1.69fffc325f2c5p-1, 0x1.27ecfcb3c90bap-55},
{0x1.6e00038b95a04p-1, 0x1.8ff8856739326p-55},
{0x1.71fffe09994e3p-1, 0x1.afd40275f82b1p-55},
{0x1.7600015590e1p-1, -0x1.2fd75b4238341p-56},
{0x1.7a00012655bd5p-1, 0x1.808e67c242b76p-56},
{0x1.7e0003259e9a6p-1, -0x1.208e426f622b7p-57},
{0x1.81fffedb4b2d2p-1, -0x1.402461ea5c92fp-55},
{0x1.860002dfafcc3p-1, 0x1.df7f4a2f29a1fp-57},
{0x1.89ffff78c6b5p-1, -0x1.e0453094995fdp-55},
{0x1.8e00039671566p-1, -0x1.a04f3bec77b45p-55},
{0x1.91fffe2bf1745p-1, -0x1.7fa34400e203cp-56},
{0x1.95fffcc5c9fd1p-1, -0x1.6ff8005a0695dp-56},
{0x1.9a0003bba4767p-1, 0x1.0f8c4c4ec7e03p-56},
{0x1.9dfffe7b92da5p-1, 0x1.e7fd9478c4602p-55},
{0x1.a1fffd72efdafp-1, -0x1.a0c554dcdae7ep-57},
{0x1.a5fffde04ff95p-1, 0x1.67da98ce9b26bp-55},
{0x1.a9fffca5e8d2bp-1, -0x1.284c9b54c13dep-55},
{0x1.adfffddad03eap-1, 0x1.812c8ea602e3cp-58},
{0x1.b1ffff10d3d4dp-1, -0x1.efaddad27789cp-55},
{0x1.b5fffce21165ap-1, 0x1.3cb1719c61237p-58},
{0x1.b9fffd950e674p-1, 0x1.3f7d94194cep-56},
{0x1.be000139ca8afp-1, 0x1.50ac4215d9bcp-56},
{0x1.c20005b46df99p-1, 0x1.beea653e9c1c9p-57},
{0x1.c600040b9f7aep-1, -0x1.c079f274a70d6p-56},
{0x1.ca0006255fd8ap-1, -0x1.a0b4076e84c1fp-56},
{0x1.cdfffd94c095dp-1, 0x1.8f933f99ab5d7p-55},
{0x1.d1ffff975d6cfp-1, -0x1.82c08665fe1bep-58},
{0x1.d5fffa2561c93p-1, -0x1.b04289bd295f3p-56},
{0x1.d9fff9d228b0cp-1, 0x1.70251340fa236p-55},
{0x1.de00065bc7e16p-1, -0x1.5011e16a4d80cp-56},
{0x1.e200002f64791p-1, 0x1.9802f09ef62ep-55},
{0x1.e600057d7a6d8p-1, -0x1.e0b75580cf7fap-56},
{0x1.ea00027edc00cp-1, -0x1.c848309459811p-55},
{0x1.ee0006cf5cb7cp-1, -0x1.f8027951576f4p-55},
{0x1.f2000782b7dccp-1, -0x1.f81d97274538fp-55},
{0x1.f6000260c450ap-1, -0x1.071002727ffdcp-59},
{0x1.f9fffe88cd533p-1, -0x1.81bdce1fda8bp-58},
{0x1.fdfffd50f8689p-1, 0x1.7f91acb918e6ep-55},
{0x1.0200004292367p+0, 0x1.b7ff365324681p-54},
{0x1.05fffe3e3d668p+0, 0x1.6fa08ddae957bp-55},
{0x1.0a0000a85a757p+0, -0x1.7e2de80d3fb91p-58},
{0x1.0e0001a5f3fccp+0, -0x1.1823305c5f014p-54},
{0x1.11ffff8afbaf5p+0, -0x1.bfabb6680bac2p-55},
{0x1.15fffe54d91adp+0, -0x1.d7f121737e7efp-54},
{0x1.1a00011ac36e1p+0, 0x1.c000a0516f5ffp-54},
{0x1.1e00019c84248p+0, -0x1.082fbe4da5dap-54},
{0x1.220000ffe5e6ep+0, -0x1.8fdd04c9cfb43p-55},
{0x1.26000269fd891p+0, 0x1.cfe2a7994d182p-55},
{0x1.2a00029a6e6dap+0, -0x1.00273715e8bc5p-56},
{0x1.2dfffe0293e39p+0, 0x1.b7c39dab2a6f9p-54},
{0x1.31ffff7dcf082p+0, 0x1.df1336edc5254p-56},
{0x1.35ffff05a8b6p+0, -0x1.e03564ccd31ebp-54},
{0x1.3a0002e0eaeccp+0, 0x1.5f0e74bd3a477p-56},
{0x1.3e000043bb236p+0, 0x1.c7dcb149d8833p-54},
{0x1.4200002d187ffp+0, 0x1.e08afcf2d3d28p-56},
{0x1.460000d387cb1p+0, 0x1.20837856599a6p-55},
{0x1.4a00004569f89p+0, -0x1.9fa5c904fbcd2p-55},
{0x1.4e000043543f3p+0, -0x1.81125ed175329p-56},
{0x1.51fffcc027f0fp+0, 0x1.883d8847754dcp-54},
{0x1.55ffffd87b36fp+0, -0x1.709e731d02807p-55},
{0x1.59ffff21df7bap+0, 0x1.7f79f68727b02p-55},
{0x1.5dfffebfc3481p+0, -0x1.180902e30e93ep-54},
},
#endif
};

28
external/musl/log2_data.h vendored Normal file
View File

@ -0,0 +1,28 @@
/*
* Copyright (c) 2018, Arm Limited.
* SPDX-License-Identifier: MIT
*/
#ifndef _LOG2_DATA_H
#define _LOG2_DATA_H
#include <features.h>
#define LOG2_TABLE_BITS 6
#define LOG2_POLY_ORDER 7
#define LOG2_POLY1_ORDER 11
extern hidden const struct log2_data {
double invln2hi;
double invln2lo;
double poly[LOG2_POLY_ORDER - 1];
double poly1[LOG2_POLY1_ORDER - 1];
struct {
double invc, logc;
} tab[1 << LOG2_TABLE_BITS];
#if !__FP_FAST_FMA
struct {
double chi, clo;
} tab2[1 << LOG2_TABLE_BITS];
#endif
} __log2_data;
#endif

34
external/musl/scalbn.c vendored Normal file
View File

@ -0,0 +1,34 @@
#include <math.h>
#include <stdint.h>
#include "libm.h"
double __cdecl scalbn(double x, int n)
{
union {double f; uint64_t i;} u;
double_t y = x;
if (n > 1023) {
y *= 0x1p1023;
n -= 1023;
if (n > 1023) {
y *= 0x1p1023;
n -= 1023;
if (n > 1023)
n = 1023;
}
} else if (n < -1022) {
/* make sure final n < -53 to avoid double
rounding in the subnormal range */
y *= 0x1p-1022 * 0x1p53;
n += 1022 - 53;
if (n < -1022) {
y *= 0x1p-1022 * 0x1p53;
n += 1022 - 53;
if (n < -1022)
n = -1022;
}
}
u.i = (uint64_t)(0x3ff+n)<<52;
x = y * u.f;
return x;
}

80
external/musl/sin.c vendored Normal file
View File

@ -0,0 +1,80 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* sin(x)
* Return sine function of x.
*
* kernel function:
* __sin ... sine function on [-pi/4,pi/4]
* __cos ... cose function on [-pi/4,pi/4]
* __rem_pio2 ... argument reduction routine
*
* Method.
* Let S,C and T denote the sin, cos and tan respectively on
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
* in [-pi/4 , +pi/4], and let n = k mod 4.
* We have
*
* n sin(x) cos(x) tan(x)
* ----------------------------------------------------------
* 0 S C T
* 1 C -S -1/T
* 2 -S -C T
* 3 -C S -1/T
* ----------------------------------------------------------
*
* Special cases:
* Let trig be any of sin, cos, or tan.
* trig(+-INF) is NaN, with signals;
* trig(NaN) is that NaN;
*
* Accuracy:
* TRIG(x) returns trig(x) nearly rounded
*/
#include "libm.h"
double __cdecl sin(double x)
{
double y[2];
uint32_t ix;
unsigned n;
/* High word of x. */
GET_HIGH_WORD(ix, x);
ix &= 0x7fffffff;
/* |x| ~< pi/4 */
if (ix <= 0x3fe921fb) {
if (ix < 0x3e500000) { /* |x| < 2**-26 */
/* raise inexact if x != 0 and underflow if subnormal*/
FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
return x;
}
return __sin(x, 0.0, 0);
}
/* sin(Inf or NaN) is NaN */
if (isinf(x))
return math_error(_DOMAIN, "sin", x, 0, x - x);
if (ix >= 0x7ff00000)
return x - x;
/* argument reduction needed */
n = __rem_pio2(x, y);
switch (n&3) {
case 0: return __sin(y[0], y[1], 1);
case 1: return __cos(y[0], y[1]);
case 2: return -__sin(y[0], y[1], 1);
default:
return -__cos(y[0], y[1]);
}
}

69
external/musl/sincos.c vendored Normal file
View File

@ -0,0 +1,69 @@
/* origin: FreeBSD /usr/src/lib/msun/src/s_sin.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#define _GNU_SOURCE
#include "libm.h"
void __cdecl sincos(double x, double *sin, double *cos)
{
double y[2], s, c;
uint32_t ix;
unsigned n;
GET_HIGH_WORD(ix, x);
ix &= 0x7fffffff;
/* |x| ~< pi/4 */
if (ix <= 0x3fe921fb) {
/* if |x| < 2**-27 * sqrt(2) */
if (ix < 0x3e46a09e) {
/* raise inexact if x!=0 and underflow if subnormal */
FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
*sin = x;
*cos = 1.0;
return;
}
*sin = __sin(x, 0.0, 0);
*cos = __cos(x, 0.0);
return;
}
/* sincos(Inf or NaN) is NaN */
if (ix >= 0x7ff00000) {
*sin = *cos = x - x;
return;
}
/* argument reduction needed */
n = __rem_pio2(x, y);
s = __sin(y[0], y[1], 1);
c = __cos(y[0], y[1]);
switch (n&3) {
case 0:
*sin = s;
*cos = c;
break;
case 1:
*sin = c;
*cos = -s;
break;
case 2:
*sin = -s;
*cos = -c;
break;
case 3:
default:
*sin = -c;
*cos = s;
break;
}
}

158
external/musl/sqrt.c vendored Normal file
View File

@ -0,0 +1,158 @@
#include <stdint.h>
#include <math.h>
#include "libm.h"
#include "sqrt_data.h"
#define FENV_SUPPORT 1
/* returns a*b*2^-32 - e, with error 0 <= e < 1. */
static inline uint32_t mul32(uint32_t a, uint32_t b)
{
return (uint64_t)a*b >> 32;
}
/* returns a*b*2^-64 - e, with error 0 <= e < 3. */
static inline uint64_t mul64(uint64_t a, uint64_t b)
{
uint64_t ahi = a>>32;
uint64_t alo = a&0xffffffff;
uint64_t bhi = b>>32;
uint64_t blo = b&0xffffffff;
return ahi*bhi + (ahi*blo >> 32) + (alo*bhi >> 32);
}
double __cdecl sqrt(double x)
{
uint64_t ix, top, m;
/* special case handling. */
ix = asuint64(x);
top = ix >> 52;
if (predict_false(top - 0x001 >= 0x7ff - 0x001)) {
/* x < 0x1p-1022 or inf or nan. */
if (ix * 2 == 0)
return x;
if (ix == 0x7ff0000000000000)
return x;
if (ix > 0x7ff0000000000000)
return math_error(_DOMAIN, "sqrt", x, 0, (x - x) / (x - x));
/* x is subnormal, normalize it. */
ix = asuint64(x * 0x1p52);
top = ix >> 52;
top -= 52;
}
/* argument reduction:
x = 4^e m; with integer e, and m in [1, 4)
m: fixed point representation [2.62]
2^e is the exponent part of the result. */
int even = top & 1;
m = (ix << 11) | 0x8000000000000000;
if (even) m >>= 1;
top = (top + 0x3ff) >> 1;
/* approximate r ~ 1/sqrt(m) and s ~ sqrt(m) when m in [1,4)
initial estimate:
7bit table lookup (1bit exponent and 6bit significand).
iterative approximation:
using 2 goldschmidt iterations with 32bit int arithmetics
and a final iteration with 64bit int arithmetics.
details:
the relative error (e = r0 sqrt(m)-1) of a linear estimate
(r0 = a m + b) is |e| < 0.085955 ~ 0x1.6p-4 at best,
a table lookup is faster and needs one less iteration
6 bit lookup table (128b) gives |e| < 0x1.f9p-8
7 bit lookup table (256b) gives |e| < 0x1.fdp-9
for single and double prec 6bit is enough but for quad
prec 7bit is needed (or modified iterations). to avoid
one more iteration >=13bit table would be needed (16k).
a newton-raphson iteration for r is
w = r*r
u = 3 - m*w
r = r*u/2
can use a goldschmidt iteration for s at the end or
s = m*r
first goldschmidt iteration is
s = m*r
u = 3 - s*r
r = r*u/2
s = s*u/2
next goldschmidt iteration is
u = 3 - s*r
r = r*u/2
s = s*u/2
and at the end r is not computed only s.
they use the same amount of operations and converge at the
same quadratic rate, i.e. if
r1 sqrt(m) - 1 = e, then
r2 sqrt(m) - 1 = -3/2 e^2 - 1/2 e^3
the advantage of goldschmidt is that the mul for s and r
are independent (computed in parallel), however it is not
"self synchronizing": it only uses the input m in the
first iteration so rounding errors accumulate. at the end
or when switching to larger precision arithmetics rounding
errors dominate so the first iteration should be used.
the fixed point representations are
m: 2.30 r: 0.32, s: 2.30, d: 2.30, u: 2.30, three: 2.30
and after switching to 64 bit
m: 2.62 r: 0.64, s: 2.62, d: 2.62, u: 2.62, three: 2.62 */
static const uint64_t three = 0xc0000000;
uint64_t r, s, d, u, i;
i = (ix >> 46) % 128;
r = (uint32_t)__rsqrt_tab[i] << 16;
/* |r sqrt(m) - 1| < 0x1.fdp-9 */
s = mul32(m>>32, r);
/* |s/sqrt(m) - 1| < 0x1.fdp-9 */
d = mul32(s, r);
u = three - d;
r = mul32(r, u) << 1;
/* |r sqrt(m) - 1| < 0x1.7bp-16 */
s = mul32(s, u) << 1;
/* |s/sqrt(m) - 1| < 0x1.7bp-16 */
d = mul32(s, r);
u = three - d;
r = mul32(r, u) << 1;
/* |r sqrt(m) - 1| < 0x1.3704p-29 (measured worst-case) */
r = r << 32;
s = mul64(m, r);
d = mul64(s, r);
u = (three<<32) - d;
s = mul64(s, u); /* repr: 3.61 */
/* -0x1p-57 < s - sqrt(m) < 0x1.8001p-61 */
s = (s - 2) >> 9; /* repr: 12.52 */
/* -0x1.09p-52 < s - sqrt(m) < -0x1.fffcp-63 */
/* s < sqrt(m) < s + 0x1.09p-52,
compute nearest rounded result:
the nearest result to 52 bits is either s or s+0x1p-52,
we can decide by comparing (2^52 s + 0.5)^2 to 2^104 m. */
uint64_t d0, d1, d2;
double y, t;
d0 = (m << 42) - s*s;
d1 = s - d0;
d2 = d1 + s + 1;
s += d1 >> 63;
s &= 0x000fffffffffffff;
s |= top << 52;
y = asdouble(s);
if (FENV_SUPPORT) {
/* handle rounding modes and inexact exception:
only (s+1)^2 == 2^42 m case is exact otherwise
add a tiny value to cause the fenv effects. */
uint64_t tiny = predict_false(d2==0) ? 0 : 0x0010000000000000;
tiny |= (d1^d2) & 0x8000000000000000;
t = asdouble(tiny);
y = eval_as_double(y + t);
}
return y;
}

19
external/musl/sqrt_data.c vendored Normal file
View File

@ -0,0 +1,19 @@
#include "sqrt_data.h"
const uint16_t __rsqrt_tab[128] = {
0xb451,0xb2f0,0xb196,0xb044,0xaef9,0xadb6,0xac79,0xab43,
0xaa14,0xa8eb,0xa7c8,0xa6aa,0xa592,0xa480,0xa373,0xa26b,
0xa168,0xa06a,0x9f70,0x9e7b,0x9d8a,0x9c9d,0x9bb5,0x9ad1,
0x99f0,0x9913,0x983a,0x9765,0x9693,0x95c4,0x94f8,0x9430,
0x936b,0x92a9,0x91ea,0x912e,0x9075,0x8fbe,0x8f0a,0x8e59,
0x8daa,0x8cfe,0x8c54,0x8bac,0x8b07,0x8a64,0x89c4,0x8925,
0x8889,0x87ee,0x8756,0x86c0,0x862b,0x8599,0x8508,0x8479,
0x83ec,0x8361,0x82d8,0x8250,0x81c9,0x8145,0x80c2,0x8040,
0xff02,0xfd0e,0xfb25,0xf947,0xf773,0xf5aa,0xf3ea,0xf234,
0xf087,0xeee3,0xed47,0xebb3,0xea27,0xe8a3,0xe727,0xe5b2,
0xe443,0xe2dc,0xe17a,0xe020,0xdecb,0xdd7d,0xdc34,0xdaf1,
0xd9b3,0xd87b,0xd748,0xd61a,0xd4f1,0xd3cd,0xd2ad,0xd192,
0xd07b,0xcf69,0xce5b,0xcd51,0xcc4a,0xcb48,0xca4a,0xc94f,
0xc858,0xc764,0xc674,0xc587,0xc49d,0xc3b7,0xc2d4,0xc1f4,
0xc116,0xc03c,0xbf65,0xbe90,0xbdbe,0xbcef,0xbc23,0xbb59,
0xba91,0xb9cc,0xb90a,0xb84a,0xb78c,0xb6d0,0xb617,0xb560,
};

13
external/musl/sqrt_data.h vendored Normal file
View File

@ -0,0 +1,13 @@
#ifndef _SQRT_DATA_H
#define _SQRT_DATA_H
#include <features.h>
#include <stdint.h>
/* if x in [1,2): i = (int)(64*x);
if x in [2,4): i = (int)(32*x-64);
__rsqrt_tab[i]*2^-16 is estimating 1/sqrt(x) with small relative error:
|__rsqrt_tab[i]*0x1p-16*sqrt(x) - 1| < -0x1.fdp-9 < 2^-8 */
extern hidden const uint16_t __rsqrt_tab[128];
#endif

83
external/musl/sqrtf.c vendored Normal file
View File

@ -0,0 +1,83 @@
#include <stdint.h>
#include <math.h>
#include "libm.h"
#include "sqrt_data.h"
#define FENV_SUPPORT 1
static inline uint32_t mul32(uint32_t a, uint32_t b)
{
return (uint64_t)a*b >> 32;
}
/* see sqrt.c for more detailed comments. */
float __cdecl sqrtf(float x)
{
uint32_t ix, m, m1, m0, even, ey;
ix = asuint(x);
if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) {
/* x < 0x1p-126 or inf or nan. */
if (ix * 2 == 0)
return x;
if (ix == 0x7f800000)
return x;
if (ix > 0x7f800000)
return math_error(_DOMAIN, "sqrtf", x, 0, (x - x) / (x - x));
/* x is subnormal, normalize it. */
ix = asuint(x * 0x1p23f);
ix -= 23 << 23;
}
/* x = 4^e m; with int e and m in [1, 4). */
even = ix & 0x00800000;
m1 = (ix << 8) | 0x80000000;
m0 = (ix << 7) & 0x7fffffff;
m = even ? m0 : m1;
/* 2^e is the exponent part of the return value. */
ey = ix >> 1;
ey += 0x3f800000 >> 1;
ey &= 0x7f800000;
/* compute r ~ 1/sqrt(m), s ~ sqrt(m) with 2 goldschmidt iterations. */
static const uint32_t three = 0xc0000000;
uint32_t r, s, d, u, i;
i = (ix >> 17) % 128;
r = (uint32_t)__rsqrt_tab[i] << 16;
/* |r*sqrt(m) - 1| < 0x1p-8 */
s = mul32(m, r);
/* |s/sqrt(m) - 1| < 0x1p-8 */
d = mul32(s, r);
u = three - d;
r = mul32(r, u) << 1;
/* |r*sqrt(m) - 1| < 0x1.7bp-16 */
s = mul32(s, u) << 1;
/* |s/sqrt(m) - 1| < 0x1.7bp-16 */
d = mul32(s, r);
u = three - d;
s = mul32(s, u);
/* -0x1.03p-28 < s/sqrt(m) - 1 < 0x1.fp-31 */
s = (s - 1)>>6;
/* s < sqrt(m) < s + 0x1.08p-23 */
/* compute nearest rounded result. */
uint32_t d0, d1, d2;
float y, t;
d0 = (m << 16) - s*s;
d1 = s - d0;
d2 = d1 + s + 1;
s += d1 >> 31;
s &= 0x007fffff;
s |= ey;
y = asfloat(s);
if (FENV_SUPPORT) {
/* handle rounding and inexact exception. */
uint32_t tiny = predict_false(d2==0) ? 0 : 0x01000000;
tiny |= (d1^d2) & 0x80000000;
t = asfloat(tiny);
y = eval_as_float(y + t);
}
return y;
}

View File

@ -14,13 +14,13 @@
#include "bridge.h"
#include "library.h"
#include "callback.h"
#include "threads.h"
#include "x64trace.h"
#include "custommem.h"
#include "khash.h"
#include "threads.h"
#include "rbtree.h"
#include "mysignal.h"
#include "mypthread.h"
#ifdef DYNAREC
#include "dynablock.h"
#include "dynarec/dynablock_private.h"

View File

@ -2,7 +2,6 @@
#include <stdlib.h>
#include <stddef.h>
#include <errno.h>
#include <signal.h>
#include "os.h"
#include "debug.h"

View File

@ -4,7 +4,6 @@
#include <errno.h>
#include <string.h>
#include <math.h>
#include <signal.h>
#include <sys/types.h>
#include <unistd.h>

View File

@ -4,7 +4,6 @@
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <signal.h>
#include <sys/types.h>
#include <unistd.h>

View File

@ -1,7 +1,8 @@
#ifndef __BOX64CONTEXT_H_
#define __BOX64CONTEXT_H_
#include <stdint.h>
#include <pthread.h>
#include "mypthread.h"
#include "pathcoll.h"
#include "dictionnary.h"
#ifdef DYNAREC

29
src/include/mypthread.h Normal file
View File

@ -0,0 +1,29 @@
#ifndef __MYPTHREAD_H_
#define __MYPTHREAD_H_
#ifndef _WIN32
#include <pthread.h>
#else
#include <windows.h>
NTSTATUS WINAPI RtlEnterCriticalSection(RTL_CRITICAL_SECTION *);
NTSTATUS WINAPI RtlLeaveCriticalSection(RTL_CRITICAL_SECTION *);
BOOL WINAPI RtlTryEnterCriticalSection(RTL_CRITICAL_SECTION *);
NTSTATUS WINAPI RtlInitializeCriticalSection(RTL_CRITICAL_SECTION *);
typedef void* pthread_key_t;
typedef void* pthread_mutexattr_t;
#define pthread_mutex_t RTL_CRITICAL_SECTION
#define pthread_mutex_init(x, y) RtlInitializeCriticalSection(x)
#define pthread_mutex_lock(x) RtlEnterCriticalSection(x)
#define pthread_mutex_unlock(x) RtlLeaveCriticalSection(x)
#define pthread_mutex_trylock(x) !RtlTryEnterCriticalSection(x)
#define pthread_mutex_destroy(x) 0
#define pthread_mutexattr_init(x) 0
#define pthread_mutexattr_destroy(x) 0
#define pthread_mutexattr_settype(x, y) 0
#define pthread_atfork(a, b, c) 0
#endif
#endif // __MYPTHREAD_H_

View File

@ -12,7 +12,11 @@ typedef sigset_t __sigset_t;
#define sigfillset(x)
#define SIGILL 4
#define SIGTRAP 5
#define SIGSEGV 11
#define pthread_sigmask(a, b, c) 0
#endif
#endif // __MYSIGNAL_H_

View File

@ -6,6 +6,14 @@
#define HandleToULong(h) ((ULONG)(ULONG_PTR)(h))
NTSTATUS WINAPI NtYieldExecution(void);
static HANDLE myGetProcessHeap(void)
{
return ((HANDLE**)NtCurrentTeb())[12][6];
}
int GetTID(void)
{
return HandleToULong(((HANDLE*)NtCurrentTeb())[9]);
@ -13,7 +21,7 @@ int GetTID(void)
int SchedYield(void)
{
return SwitchToThread();
return (NtYieldExecution() != STATUS_NO_YIELD_PERFORMED);
}
int IsBridgeSignature(char s, char c)
@ -151,7 +159,7 @@ int InternalMunmap(void* addr, unsigned long length)
void* WinMalloc(size_t size)
{
void* ret;
ret = RtlAllocateHeap(GetProcessHeap(), 0, size);
ret = RtlAllocateHeap(myGetProcessHeap(), 0, size);
return ret;
}
@ -160,18 +168,23 @@ void* WinRealloc(void* ptr, size_t size)
void* ret;
if (!ptr)
return WinMalloc(size);
ret = RtlReAllocateHeap(GetProcessHeap(), HEAP_ZERO_MEMORY, ptr, size);
ret = RtlReAllocateHeap(myGetProcessHeap(), HEAP_ZERO_MEMORY, ptr, size);
return ret;
}
void* WinCalloc(size_t nmemb, size_t size)
{
void* ret;
ret = RtlAllocateHeap(GetProcessHeap(), HEAP_ZERO_MEMORY, nmemb * size);
ret = RtlAllocateHeap(myGetProcessHeap(), HEAP_ZERO_MEMORY, nmemb * size);
return ret;
}
void WinFree(void* ptr)
{
RtlFreeHeap(GetProcessHeap(), 0, ptr);
RtlFreeHeap(myGetProcessHeap(), 0, ptr);
}
void free(void* ptr)
{
RtlFreeHeap(myGetProcessHeap(), 0, ptr);
}

View File

@ -8,9 +8,34 @@ string(REPLACE "," ";" DYNAREC_PASS "${DYNAREC_PASS_STR}")
string(REPLACE "," ";" INTERPRETER "${INTERPRETER_STR}")
set(WOW64_MAIN_SRC
"${BOX64_ROOT}/wow64/crt.c"
"${BOX64_ROOT}/wow64/wowbox64.c"
)
set(MUSL_SRC
"${BOX64_ROOT}/external/musl/__cos.c"
"${BOX64_ROOT}/external/musl/__math_divzero.c"
"${BOX64_ROOT}/external/musl/__math_invalid.c"
"${BOX64_ROOT}/external/musl/__rem_pio2_large.c"
"${BOX64_ROOT}/external/musl/__rem_pio2.c"
"${BOX64_ROOT}/external/musl/__sin.c"
"${BOX64_ROOT}/external/musl/cos.c"
"${BOX64_ROOT}/external/musl/exp_data.c"
"${BOX64_ROOT}/external/musl/exp2.c"
"${BOX64_ROOT}/external/musl/expm1.c"
"${BOX64_ROOT}/external/musl/frexp.c"
"${BOX64_ROOT}/external/musl/ldexp.c"
"${BOX64_ROOT}/external/musl/log1p.c"
"${BOX64_ROOT}/external/musl/log2_data.c"
"${BOX64_ROOT}/external/musl/log2.c"
"${BOX64_ROOT}/external/musl/scalbn.c"
"${BOX64_ROOT}/external/musl/sin.c"
"${BOX64_ROOT}/external/musl/sincos.c"
"${BOX64_ROOT}/external/musl/sqrt_data.c"
"${BOX64_ROOT}/external/musl/sqrt.c"
"${BOX64_ROOT}/external/musl/sqrtf.c"
)
set_source_files_properties(${DYNAREC_ASM} PROPERTIES COMPILE_OPTIONS "-mcpu=cortex-a76")
foreach(STEP_VALUE RANGE 3)
@ -50,7 +75,7 @@ set(WOW64_BOX64CPU_SRC
"${BOX64_ROOT}/src/tools/rbtree.c"
)
add_library(wowbox64 SHARED ${WOW64_MAIN_SRC} ${WOW64_BOX64CPU_SRC} ${INTERPRETER} ${DYNAREC_ASM}
add_library(wowbox64 SHARED ${WOW64_MAIN_SRC} ${MUSL_SRC} ${WOW64_BOX64CPU_SRC} ${INTERPRETER} ${DYNAREC_ASM}
$<TARGET_OBJECTS:wow64_dynarec_pass0>
$<TARGET_OBJECTS:wow64_dynarec_pass1>
$<TARGET_OBJECTS:wow64_dynarec_pass2>
@ -62,6 +87,8 @@ include_directories(
"${BOX64_ROOT}/src/include"
"${BOX64_ROOT}/src"
"${BOX64_ROOT}/wow64/include"
"${BOX64_ROOT}/external/musl"
"${BOX64_ROOT}/external/musl/internal"
)
set(DLLTOOL aarch64-w64-mingw32-dlltool)
@ -89,7 +116,6 @@ import_dll(wow64)
# always enable DynaRec, only supports ARM64 for now.
add_compile_definitions(DYNAREC ARM64)
# FIXME: Cannot link with winpthread!
target_link_options(wowbox64 PRIVATE "-Wl,-Bstatic" "-lwinpthread" "-Wl,-Bdynamic")
target_link_options(wowbox64 PRIVATE -nostdlib -nodefaultlibs -lclang_rt.builtins-aarch64)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)

86
wow64/crt.c Normal file
View File

@ -0,0 +1,86 @@
#include <stdio.h>
#include <math.h>
#include <stdint.h>
#include <windows.h>
#include <ntstatus.h>
#include <winternl.h>
int __mingw_sprintf(char* buffer, const char* format, ...)
{
va_list args;
int ret;
va_start(args, format);
ret = vsprintf(buffer, format, args);
va_end(args);
return ret;
}
int __isnanf(float x)
{
union { float x; unsigned int i; } u = { x };
return (u.i & 0x7fffffff) > 0x7f800000;
}
int __isnan(double x)
{
union { double x; unsigned __int64 i; } u = { x };
return (u.i & ~0ull >> 1) > 0x7ffull << 52;
}
double math_error(int type, const char *name, double arg1, double arg2, double retval)
{
return retval;
}
int __fpclassify(double x)
{
union {double f; uint64_t i;} u = {x};
int e = u.i>>52 & 0x7ff;
if (!e) return u.i<<1 ? FP_SUBNORMAL : FP_ZERO;
if (e==0x7ff) return u.i<<12 ? FP_NAN : FP_INFINITE;
return FP_NORMAL;
}
int __fpclassifyf(float x)
{
union {float f; uint32_t i;} u = {x};
int e = u.i>>23 & 0xff;
if (!e) return u.i<<1 ? FP_SUBNORMAL : FP_ZERO;
if (e==0xff) return u.i<<9 ? FP_NAN : FP_INFINITE;
return FP_NORMAL;
}
int fegetround (void)
{
return 0;
}
int fesetround (int __rounding_direction)
{
return 0;
}
div_t __cdecl div(int num, int denom)
{
div_t ret;
ret.quot = num / denom;
ret.rem = num % denom;
return ret;
}
ldiv_t __cdecl ldiv(long num, long denom)
{
ldiv_t ret;
ret.quot = num / denom;
ret.rem = num % denom;
return ret;
}
void _assert (const char *_Message, const char *_File, unsigned _Line)
{
// NYI
}

View File

@ -103,6 +103,7 @@ void WINAPI BTCpuNotifyUnmapViewOfSection(PVOID addr, ULONG flags)
NTSTATUS WINAPI BTCpuProcessInit(void)
{
// NYI
__wine_dbg_output("[BOX64] BTCpuProcessInit\n");
return STATUS_SUCCESS;
}
@ -134,3 +135,11 @@ NTSTATUS WINAPI BTCpuTurboThunkControl(ULONG enable)
// NYI
return STATUS_SUCCESS;
}
NTSTATUS WINAPI LdrDisableThreadCalloutsForDll(HMODULE);
BOOL WINAPI DllMainCRTStartup(HINSTANCE inst, DWORD reason, void* reserved)
{
if (reason == DLL_PROCESS_ATTACH) LdrDisableThreadCalloutsForDll(inst);
return TRUE;
}