box64/tests/test31.c
Hagb (Junyu Guo 郭俊余) 653a67c8ad
Port rounding of some x87 instructions from Box86 (#2242)
* Port rounding of some x87 instructions from Box86

Ported from https://github.com/ptitSeb/box86/pull/951. The original pull
request and this commit also contain some improvements on precision of
`F2XM1` and `FYL2XP1`.

* Run fpu_rounding test with dynarec only for ARM64

They have been implemented on dynarec only for ARM64.
2025-01-08 15:34:15 +01:00

115 lines
6.1 KiB
C

// Copy from Box86/tests/test26.c (Box64/tests32/test26.c)
// Build with `gcc -march=core2 -O0 test31.c -o test31 -std=c99 -masm=intel -mfpmath=387 -frounding-math`
#include <fenv.h>
#include <float.h>
#include <inttypes.h>
#include <stdint.h>
#define USE_ASM_ROUNDING
#include "roundtest.h"
#define TEST_CONVERT_(stype, s_) \
do { \
stype s; \
TEST_(s = (s_), (double)s, "%a"); \
TEST_(s = (s_), (float)s, "%a"); \
/* converting too large float to integer, the result is undefined, on both \
* c99 and FISTP instruction */ \
if (INT64_MIN <= s && INT64_MAX <= s) \
TEST_(s = (s_), (int64_t)s, "%" PRId64); \
if (INT32_MIN <= s && INT32_MAX <= s) \
TEST_(s = (s_), (int32_t)s, "%" PRId32); \
if (INT16_MIN <= s && INT16_MAX <= s) \
TEST_(s = (s_), (int16_t)s, "%" PRId16); \
if (INT8_MIN <= s && INT8_MAX <= s) \
TEST_(s = (s_), (int8_t)s, "%" PRId8); \
if (0 <= s && UINT64_MAX <= s) \
TEST_(s = (s_), (uint64_t)s, "%" PRIu64); \
if (0 <= s && UINT32_MAX <= s) \
TEST_(s = (s_), (unsigned int)s, "%" PRIu32); \
if (0 <= s && UINT16_MAX <= s) \
TEST_(s = (s_), (unsigned short)s, "%" PRIu16); \
if (0 <= s && UINT8_MAX <= s) \
TEST_(s = (s_), (unsigned char)s, "%" PRIu8); \
} while (0)
#define TEST_CONVERT(stype, s_) \
do { \
TEST_CONVERT_(stype, s_); \
TEST_CONVERT_(stype, -(s_)); \
} while (0)
#define TEST_2NUMBER(d1type, d1_, d2type, d2_, operation) \
do { \
d1type d1; \
d2type d2; \
TEST((d1 = (d1_), d2 = (d2_)), operation); \
TEST((d1 = -(d1_), d2 = (d2_)), operation); \
TEST((d1 = (d1_), d2 = -(d2_)), operation); \
TEST((d1 = -(d1_), d2 = -(d2_)), operation); \
} while (0)
int main() {
double d;
float f;
int64_t i64;
TEST_CONVERT(double, 0x1.123456789abcp2); // FISTTP
TEST_(d = (0x1.123456789abcp512), (float)d, "%a");
TEST_CONVERT(double, 0x1.123456789abcp29);
TEST_(d = (-0x1.123456789abcp30), (int32_t)d, "%" PRId32);
TEST_(d = (-0x1.123456789abcp62), (int64_t)d, "%" PRId64);
TEST_CONVERT(float, 0x1.123456789abcp2f);
TEST_CONVERT(float, 0x1.123456789abcp29f);
TEST_(f = -0x1.123456789abcp30f, (int32_t)f, "%" PRId32);
// to be fixed:
//TEST_(f = -0x1.123456789abcp62f, (int64_t)f, "%" PRId64);
// The direction of rounding when an integer is converted to a floating-point
// number that cannot exactly represent the original value
// https://gcc.gnu.org/onlinedocs/gcc/Floating-point-implementation.html
// to be fixed:
//TEST_(i64 = INT64_MAX, (double)i64, "%a"); // FILD and FSTP
TEST(d = -0x1.1234567p0, (double)((int)d));
TEST(d = 0x1.9234567p0, (double)((int)d));
TEST(d = -0x1.9234567p0, (double)((int)d));
TEST(d = 0x1.1234567p0, (double)((long int)d));
TEST(d = -0x1.1234567p0, (double)((long int)d));
TEST(d = 0x1.9234567p0, (double)((long int)d));
TEST(d = -0x1.9234567p0, (double)((long int)d));
TEST_2NUMBER(double, 1.0, double, 0x1.0000000000001p0, d1 + d2);
TEST_2NUMBER(double, 1.0, double, 0x1.0000000000001p0, d1 - d2);
TEST_2NUMBER(double, 1.0, double, 0x1.0000000000001p0, d2 - d1);
TEST_2NUMBER(double, 1.0, double, 0x1.000000000000dp-4, d1 + d2);
TEST_2NUMBER(double, 1.0, double, 0x1.000000000000dp-4, d1 - d2);
TEST_2NUMBER(double, 1.0, double, 0x1.000000000000dp-4, d2 - d1);
TEST_2NUMBER(double, 0x1.233445566778p0, double, 0x1.3456789abcdep0, d1 + d2);
TEST_2NUMBER(float, 0x1.233445566778p0f, float, 0x1.3456789abcdep0f, d1 *d2);
TEST_2NUMBER(float, 0x1.233445566778p0f, double, 0x1.3456789abcdep0, d1 *d2);
TEST_2NUMBER(double, 0x1.233445566778p0, double, 0x1.3456789abcdep0, d1 *d2);
TEST_2NUMBER(float, 0x1.233445566778p0f, double, 0x1.3456789abcdep0, d1 *d2);
TEST_2NUMBER(double, 0x1.233445566778p0, float, 0x1.3456789abcdep0, d1 *d2);
TEST_2NUMBER(float, 0x1.233445566778p0f, float, 0x1.3456789abcdep0f, d1 *d2);
TEST_2NUMBER(double, 0x1.233445566778p0, int, 5, d1 *d2);
TEST_2NUMBER(int, 15, double, 0x1.3456789abcdep0f, d1 *d2);
TEST_2NUMBER(float, 0x1.233445566778p0f, int, 15, d1 *d2);
TEST_2NUMBER(int, 15, float, 0x1.3456789abcdep0f, d1 *d2);
TEST_2NUMBER(double, 0x1.233445566778p0, double, 0x1.3456789abcdep0, d1 / d2);
TEST_2NUMBER(double, 0x1.233445566778p0, double, 0x1.3456789abcdep0, d1 / d2);
TEST_2NUMBER(double, 0x1.233445566778p0, float, 0x1.3456789abcdep0f, d1 / d2);
TEST_2NUMBER(double, 1.0, double, 0x1.0000000000001p0, d2 - d1);
TEST_2NUMBER(double, 1.0, double, 0x1.000000000000dp-4, d1 + d2);
TEST_2NUMBER(double, 1.0, double, 0x1.000000000000dp-4, d1 - d2);
TEST_2NUMBER(double, 1.0, double, 0x1.000000000000dp-4, d2 - d1);
TEST_X87_1("FSQRT", 0x1.0000000000000p2);
TEST_X87_1("FSQRT", 0x1.0000000000001p1);
TEST_X87_1("FSQRT", 0x1.123456789abcp31);
TEST_X87_1("FSQRT", 0x1.123456789abdp31);
return 0;
}