mirror of
https://git.rtems.org/rtems-libbsd/
synced 2025-06-30 03:28:00 +08:00
Do not use FreeBSD time control
This commit is contained in:
parent
510946e699
commit
89761ed754
2
Makefile
2
Makefile
@ -126,10 +126,8 @@ LIB_C_FILES += freebsd/sys/kern/kern_mbuf.c
|
||||
LIB_C_FILES += freebsd/sys/kern/kern_mib.c
|
||||
LIB_C_FILES += freebsd/sys/kern/kern_module.c
|
||||
LIB_C_FILES += freebsd/sys/kern/kern_mtxpool.c
|
||||
LIB_C_FILES += freebsd/sys/kern/kern_ntptime.c
|
||||
LIB_C_FILES += freebsd/sys/kern/kern_subr.c
|
||||
LIB_C_FILES += freebsd/sys/kern/kern_sysctl.c
|
||||
LIB_C_FILES += freebsd/sys/kern/kern_tc.c
|
||||
LIB_C_FILES += freebsd/sys/kern/kern_time.c
|
||||
LIB_C_FILES += freebsd/sys/kern/kern_timeout.c
|
||||
LIB_C_FILES += freebsd/sys/kern/subr_bufring.c
|
||||
|
@ -786,10 +786,8 @@ base.addSourceFiles(
|
||||
'sys/kern/kern_mib.c',
|
||||
'sys/kern/kern_module.c',
|
||||
'sys/kern/kern_mtxpool.c',
|
||||
'sys/kern/kern_ntptime.c',
|
||||
'sys/kern/kern_subr.c',
|
||||
'sys/kern/kern_sysctl.c',
|
||||
'sys/kern/kern_tc.c',
|
||||
'sys/kern/kern_time.c',
|
||||
'sys/kern/kern_timeout.c',
|
||||
'sys/kern/subr_bufring.c',
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -1,968 +0,0 @@
|
||||
#include <machine/rtems-bsd-config.h>
|
||||
|
||||
/*-
|
||||
* ----------------------------------------------------------------------------
|
||||
* "THE BEER-WARE LICENSE" (Revision 42):
|
||||
* <phk@FreeBSD.ORG> wrote this file. As long as you retain this notice you
|
||||
* can do whatever you want with this stuff. If we meet some day, and you think
|
||||
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
|
||||
* ----------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__FBSDID("$FreeBSD$");
|
||||
|
||||
#include <rtems/bsd/local/opt_ntp.h>
|
||||
|
||||
#include <rtems/bsd/sys/param.h>
|
||||
#include <sys/kernel.h>
|
||||
#include <sys/sysctl.h>
|
||||
#include <sys/syslog.h>
|
||||
#include <sys/systm.h>
|
||||
#include <sys/timepps.h>
|
||||
#include <sys/timetc.h>
|
||||
#include <sys/timex.h>
|
||||
|
||||
/*
|
||||
* A large step happens on boot. This constant detects such steps.
|
||||
* It is relatively small so that ntp_update_second gets called enough
|
||||
* in the typical 'missed a couple of seconds' case, but doesn't loop
|
||||
* forever when the time step is large.
|
||||
*/
|
||||
#define LARGE_STEP 200
|
||||
|
||||
/*
|
||||
* Implement a dummy timecounter which we can use until we get a real one
|
||||
* in the air. This allows the console and other early stuff to use
|
||||
* time services.
|
||||
*/
|
||||
|
||||
static u_int
|
||||
dummy_get_timecount(struct timecounter *tc)
|
||||
{
|
||||
static u_int now;
|
||||
|
||||
return (++now);
|
||||
}
|
||||
|
||||
static struct timecounter dummy_timecounter = {
|
||||
dummy_get_timecount, 0, ~0u, 1000000, "dummy", -1000000
|
||||
};
|
||||
|
||||
struct timehands {
|
||||
/* These fields must be initialized by the driver. */
|
||||
struct timecounter *th_counter;
|
||||
int64_t th_adjustment;
|
||||
u_int64_t th_scale;
|
||||
u_int th_offset_count;
|
||||
struct bintime th_offset;
|
||||
struct timeval th_microtime;
|
||||
struct timespec th_nanotime;
|
||||
/* Fields not to be copied in tc_windup start with th_generation. */
|
||||
volatile u_int th_generation;
|
||||
struct timehands *th_next;
|
||||
};
|
||||
|
||||
static struct timehands th0;
|
||||
static struct timehands th9 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th0};
|
||||
static struct timehands th8 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th9};
|
||||
static struct timehands th7 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th8};
|
||||
static struct timehands th6 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th7};
|
||||
static struct timehands th5 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th6};
|
||||
static struct timehands th4 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th5};
|
||||
static struct timehands th3 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th4};
|
||||
static struct timehands th2 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th3};
|
||||
static struct timehands th1 = { NULL, 0, 0, 0, {0, 0}, {0, 0}, {0, 0}, 0, &th2};
|
||||
static struct timehands th0 = {
|
||||
&dummy_timecounter,
|
||||
0,
|
||||
(uint64_t)-1 / 1000000,
|
||||
0,
|
||||
{1, 0},
|
||||
{0, 0},
|
||||
{0, 0},
|
||||
1,
|
||||
&th1
|
||||
};
|
||||
|
||||
static struct timehands *volatile timehands = &th0;
|
||||
struct timecounter *timecounter = &dummy_timecounter;
|
||||
static struct timecounter *timecounters = &dummy_timecounter;
|
||||
|
||||
time_t time_second = 1;
|
||||
time_t time_uptime = 1;
|
||||
|
||||
static struct bintime boottimebin;
|
||||
struct timeval boottime;
|
||||
static int sysctl_kern_boottime(SYSCTL_HANDLER_ARGS);
|
||||
SYSCTL_PROC(_kern, KERN_BOOTTIME, boottime, CTLTYPE_STRUCT|CTLFLAG_RD,
|
||||
NULL, 0, sysctl_kern_boottime, "S,timeval", "System boottime");
|
||||
|
||||
SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");
|
||||
SYSCTL_NODE(_kern_timecounter, OID_AUTO, tc, CTLFLAG_RW, 0, "");
|
||||
|
||||
static int timestepwarnings;
|
||||
SYSCTL_INT(_kern_timecounter, OID_AUTO, stepwarnings, CTLFLAG_RW,
|
||||
×tepwarnings, 0, "Log time steps");
|
||||
|
||||
static void tc_windup(void);
|
||||
static void cpu_tick_calibrate(int);
|
||||
|
||||
static int
|
||||
sysctl_kern_boottime(SYSCTL_HANDLER_ARGS)
|
||||
{
|
||||
#ifdef SCTL_MASK32
|
||||
int tv[2];
|
||||
|
||||
if (req->flags & SCTL_MASK32) {
|
||||
tv[0] = boottime.tv_sec;
|
||||
tv[1] = boottime.tv_usec;
|
||||
return SYSCTL_OUT(req, tv, sizeof(tv));
|
||||
} else
|
||||
#endif
|
||||
return SYSCTL_OUT(req, &boottime, sizeof(boottime));
|
||||
}
|
||||
|
||||
static int
|
||||
sysctl_kern_timecounter_get(SYSCTL_HANDLER_ARGS)
|
||||
{
|
||||
u_int ncount;
|
||||
struct timecounter *tc = arg1;
|
||||
|
||||
ncount = tc->tc_get_timecount(tc);
|
||||
return sysctl_handle_int(oidp, &ncount, 0, req);
|
||||
}
|
||||
|
||||
static int
|
||||
sysctl_kern_timecounter_freq(SYSCTL_HANDLER_ARGS)
|
||||
{
|
||||
u_int64_t freq;
|
||||
struct timecounter *tc = arg1;
|
||||
|
||||
freq = tc->tc_frequency;
|
||||
return sysctl_handle_quad(oidp, &freq, 0, req);
|
||||
}
|
||||
|
||||
/*
|
||||
* Return the difference between the timehands' counter value now and what
|
||||
* was when we copied it to the timehands' offset_count.
|
||||
*/
|
||||
static __inline u_int
|
||||
tc_delta(struct timehands *th)
|
||||
{
|
||||
struct timecounter *tc;
|
||||
|
||||
tc = th->th_counter;
|
||||
return ((tc->tc_get_timecount(tc) - th->th_offset_count) &
|
||||
tc->tc_counter_mask);
|
||||
}
|
||||
|
||||
/*
|
||||
* Functions for reading the time. We have to loop until we are sure that
|
||||
* the timehands that we operated on was not updated under our feet. See
|
||||
* the comment in <sys/time.h> for a description of these 12 functions.
|
||||
*/
|
||||
|
||||
void
|
||||
binuptime(struct bintime *bt)
|
||||
{
|
||||
struct timehands *th;
|
||||
u_int gen;
|
||||
|
||||
do {
|
||||
th = timehands;
|
||||
gen = th->th_generation;
|
||||
*bt = th->th_offset;
|
||||
bintime_addx(bt, th->th_scale * tc_delta(th));
|
||||
} while (gen == 0 || gen != th->th_generation);
|
||||
}
|
||||
|
||||
void
|
||||
nanouptime(struct timespec *tsp)
|
||||
{
|
||||
struct bintime bt;
|
||||
|
||||
binuptime(&bt);
|
||||
bintime2timespec(&bt, tsp);
|
||||
}
|
||||
|
||||
void
|
||||
microuptime(struct timeval *tvp)
|
||||
{
|
||||
struct bintime bt;
|
||||
|
||||
binuptime(&bt);
|
||||
bintime2timeval(&bt, tvp);
|
||||
}
|
||||
|
||||
void
|
||||
bintime(struct bintime *bt)
|
||||
{
|
||||
|
||||
binuptime(bt);
|
||||
bintime_add(bt, &boottimebin);
|
||||
}
|
||||
|
||||
void
|
||||
nanotime(struct timespec *tsp)
|
||||
{
|
||||
struct bintime bt;
|
||||
|
||||
bintime(&bt);
|
||||
bintime2timespec(&bt, tsp);
|
||||
}
|
||||
|
||||
void
|
||||
microtime(struct timeval *tvp)
|
||||
{
|
||||
struct bintime bt;
|
||||
|
||||
bintime(&bt);
|
||||
bintime2timeval(&bt, tvp);
|
||||
}
|
||||
|
||||
void
|
||||
getbinuptime(struct bintime *bt)
|
||||
{
|
||||
struct timehands *th;
|
||||
u_int gen;
|
||||
|
||||
do {
|
||||
th = timehands;
|
||||
gen = th->th_generation;
|
||||
*bt = th->th_offset;
|
||||
} while (gen == 0 || gen != th->th_generation);
|
||||
}
|
||||
|
||||
void
|
||||
getnanouptime(struct timespec *tsp)
|
||||
{
|
||||
struct timehands *th;
|
||||
u_int gen;
|
||||
|
||||
do {
|
||||
th = timehands;
|
||||
gen = th->th_generation;
|
||||
bintime2timespec(&th->th_offset, tsp);
|
||||
} while (gen == 0 || gen != th->th_generation);
|
||||
}
|
||||
|
||||
void
|
||||
getmicrouptime(struct timeval *tvp)
|
||||
{
|
||||
struct timehands *th;
|
||||
u_int gen;
|
||||
|
||||
do {
|
||||
th = timehands;
|
||||
gen = th->th_generation;
|
||||
bintime2timeval(&th->th_offset, tvp);
|
||||
} while (gen == 0 || gen != th->th_generation);
|
||||
}
|
||||
|
||||
void
|
||||
getbintime(struct bintime *bt)
|
||||
{
|
||||
struct timehands *th;
|
||||
u_int gen;
|
||||
|
||||
do {
|
||||
th = timehands;
|
||||
gen = th->th_generation;
|
||||
*bt = th->th_offset;
|
||||
} while (gen == 0 || gen != th->th_generation);
|
||||
bintime_add(bt, &boottimebin);
|
||||
}
|
||||
|
||||
void
|
||||
getnanotime(struct timespec *tsp)
|
||||
{
|
||||
struct timehands *th;
|
||||
u_int gen;
|
||||
|
||||
do {
|
||||
th = timehands;
|
||||
gen = th->th_generation;
|
||||
*tsp = th->th_nanotime;
|
||||
} while (gen == 0 || gen != th->th_generation);
|
||||
}
|
||||
|
||||
void
|
||||
getmicrotime(struct timeval *tvp)
|
||||
{
|
||||
struct timehands *th;
|
||||
u_int gen;
|
||||
|
||||
do {
|
||||
th = timehands;
|
||||
gen = th->th_generation;
|
||||
*tvp = th->th_microtime;
|
||||
} while (gen == 0 || gen != th->th_generation);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize a new timecounter and possibly use it.
|
||||
*/
|
||||
void
|
||||
tc_init(struct timecounter *tc)
|
||||
{
|
||||
u_int u;
|
||||
struct sysctl_oid *tc_root;
|
||||
|
||||
u = tc->tc_frequency / tc->tc_counter_mask;
|
||||
/* XXX: We need some margin here, 10% is a guess */
|
||||
u *= 11;
|
||||
u /= 10;
|
||||
if (u > hz && tc->tc_quality >= 0) {
|
||||
tc->tc_quality = -2000;
|
||||
if (bootverbose) {
|
||||
printf("Timecounter \"%s\" frequency %ju Hz",
|
||||
tc->tc_name, (uintmax_t)tc->tc_frequency);
|
||||
printf(" -- Insufficient hz, needs at least %u\n", u);
|
||||
}
|
||||
} else if (tc->tc_quality >= 0 || bootverbose) {
|
||||
printf("Timecounter \"%s\" frequency %ju Hz quality %d\n",
|
||||
tc->tc_name, (uintmax_t)tc->tc_frequency,
|
||||
tc->tc_quality);
|
||||
}
|
||||
|
||||
tc->tc_next = timecounters;
|
||||
timecounters = tc;
|
||||
/*
|
||||
* Set up sysctl tree for this counter.
|
||||
*/
|
||||
tc_root = SYSCTL_ADD_NODE(NULL,
|
||||
SYSCTL_STATIC_CHILDREN(_kern_timecounter_tc), OID_AUTO, tc->tc_name,
|
||||
CTLFLAG_RW, 0, "timecounter description");
|
||||
SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
|
||||
"mask", CTLFLAG_RD, &(tc->tc_counter_mask), 0,
|
||||
"mask for implemented bits");
|
||||
SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
|
||||
"counter", CTLTYPE_UINT | CTLFLAG_RD, tc, sizeof(*tc),
|
||||
sysctl_kern_timecounter_get, "IU", "current timecounter value");
|
||||
SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
|
||||
"frequency", CTLTYPE_QUAD | CTLFLAG_RD, tc, sizeof(*tc),
|
||||
sysctl_kern_timecounter_freq, "QU", "timecounter frequency");
|
||||
SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(tc_root), OID_AUTO,
|
||||
"quality", CTLFLAG_RD, &(tc->tc_quality), 0,
|
||||
"goodness of time counter");
|
||||
/*
|
||||
* Never automatically use a timecounter with negative quality.
|
||||
* Even though we run on the dummy counter, switching here may be
|
||||
* worse since this timecounter may not be monotonous.
|
||||
*/
|
||||
if (tc->tc_quality < 0)
|
||||
return;
|
||||
if (tc->tc_quality < timecounter->tc_quality)
|
||||
return;
|
||||
if (tc->tc_quality == timecounter->tc_quality &&
|
||||
tc->tc_frequency < timecounter->tc_frequency)
|
||||
return;
|
||||
(void)tc->tc_get_timecount(tc);
|
||||
(void)tc->tc_get_timecount(tc);
|
||||
timecounter = tc;
|
||||
}
|
||||
|
||||
/* Report the frequency of the current timecounter. */
|
||||
u_int64_t
|
||||
tc_getfrequency(void)
|
||||
{
|
||||
|
||||
return (timehands->th_counter->tc_frequency);
|
||||
}
|
||||
|
||||
/*
|
||||
* Step our concept of UTC. This is done by modifying our estimate of
|
||||
* when we booted.
|
||||
* XXX: not locked.
|
||||
*/
|
||||
void
|
||||
tc_setclock(struct timespec *ts)
|
||||
{
|
||||
struct timespec tbef, taft;
|
||||
struct bintime bt, bt2;
|
||||
|
||||
cpu_tick_calibrate(1);
|
||||
nanotime(&tbef);
|
||||
timespec2bintime(ts, &bt);
|
||||
binuptime(&bt2);
|
||||
bintime_sub(&bt, &bt2);
|
||||
bintime_add(&bt2, &boottimebin);
|
||||
boottimebin = bt;
|
||||
bintime2timeval(&bt, &boottime);
|
||||
|
||||
/* XXX fiddle all the little crinkly bits around the fiords... */
|
||||
tc_windup();
|
||||
nanotime(&taft);
|
||||
if (timestepwarnings) {
|
||||
log(LOG_INFO,
|
||||
"Time stepped from %jd.%09ld to %jd.%09ld (%jd.%09ld)\n",
|
||||
(intmax_t)tbef.tv_sec, tbef.tv_nsec,
|
||||
(intmax_t)taft.tv_sec, taft.tv_nsec,
|
||||
(intmax_t)ts->tv_sec, ts->tv_nsec);
|
||||
}
|
||||
cpu_tick_calibrate(1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize the next struct timehands in the ring and make
|
||||
* it the active timehands. Along the way we might switch to a different
|
||||
* timecounter and/or do seconds processing in NTP. Slightly magic.
|
||||
*/
|
||||
static void
|
||||
tc_windup(void)
|
||||
{
|
||||
struct bintime bt;
|
||||
struct timehands *th, *tho;
|
||||
u_int64_t scale;
|
||||
u_int delta, ncount, ogen;
|
||||
int i;
|
||||
time_t t;
|
||||
|
||||
/*
|
||||
* Make the next timehands a copy of the current one, but do not
|
||||
* overwrite the generation or next pointer. While we update
|
||||
* the contents, the generation must be zero.
|
||||
*/
|
||||
tho = timehands;
|
||||
th = tho->th_next;
|
||||
ogen = th->th_generation;
|
||||
th->th_generation = 0;
|
||||
bcopy(tho, th, offsetof(struct timehands, th_generation));
|
||||
|
||||
/*
|
||||
* Capture a timecounter delta on the current timecounter and if
|
||||
* changing timecounters, a counter value from the new timecounter.
|
||||
* Update the offset fields accordingly.
|
||||
*/
|
||||
delta = tc_delta(th);
|
||||
if (th->th_counter != timecounter)
|
||||
ncount = timecounter->tc_get_timecount(timecounter);
|
||||
else
|
||||
ncount = 0;
|
||||
th->th_offset_count += delta;
|
||||
th->th_offset_count &= th->th_counter->tc_counter_mask;
|
||||
while (delta > th->th_counter->tc_frequency) {
|
||||
/* Eat complete unadjusted seconds. */
|
||||
delta -= th->th_counter->tc_frequency;
|
||||
th->th_offset.sec++;
|
||||
}
|
||||
if ((delta > th->th_counter->tc_frequency / 2) &&
|
||||
(th->th_scale * delta < ((uint64_t)1 << 63))) {
|
||||
/* The product th_scale * delta just barely overflows. */
|
||||
th->th_offset.sec++;
|
||||
}
|
||||
bintime_addx(&th->th_offset, th->th_scale * delta);
|
||||
|
||||
/*
|
||||
* Hardware latching timecounters may not generate interrupts on
|
||||
* PPS events, so instead we poll them. There is a finite risk that
|
||||
* the hardware might capture a count which is later than the one we
|
||||
* got above, and therefore possibly in the next NTP second which might
|
||||
* have a different rate than the current NTP second. It doesn't
|
||||
* matter in practice.
|
||||
*/
|
||||
if (tho->th_counter->tc_poll_pps)
|
||||
tho->th_counter->tc_poll_pps(tho->th_counter);
|
||||
|
||||
/*
|
||||
* Deal with NTP second processing. The for loop normally
|
||||
* iterates at most once, but in extreme situations it might
|
||||
* keep NTP sane if timeouts are not run for several seconds.
|
||||
* At boot, the time step can be large when the TOD hardware
|
||||
* has been read, so on really large steps, we call
|
||||
* ntp_update_second only twice. We need to call it twice in
|
||||
* case we missed a leap second.
|
||||
*/
|
||||
bt = th->th_offset;
|
||||
bintime_add(&bt, &boottimebin);
|
||||
i = bt.sec - tho->th_microtime.tv_sec;
|
||||
if (i > LARGE_STEP)
|
||||
i = 2;
|
||||
for (; i > 0; i--) {
|
||||
t = bt.sec;
|
||||
ntp_update_second(&th->th_adjustment, &bt.sec);
|
||||
if (bt.sec != t)
|
||||
boottimebin.sec += bt.sec - t;
|
||||
}
|
||||
/* Update the UTC timestamps used by the get*() functions. */
|
||||
/* XXX shouldn't do this here. Should force non-`get' versions. */
|
||||
bintime2timeval(&bt, &th->th_microtime);
|
||||
bintime2timespec(&bt, &th->th_nanotime);
|
||||
|
||||
/* Now is a good time to change timecounters. */
|
||||
if (th->th_counter != timecounter) {
|
||||
th->th_counter = timecounter;
|
||||
th->th_offset_count = ncount;
|
||||
}
|
||||
|
||||
/*-
|
||||
* Recalculate the scaling factor. We want the number of 1/2^64
|
||||
* fractions of a second per period of the hardware counter, taking
|
||||
* into account the th_adjustment factor which the NTP PLL/adjtime(2)
|
||||
* processing provides us with.
|
||||
*
|
||||
* The th_adjustment is nanoseconds per second with 32 bit binary
|
||||
* fraction and we want 64 bit binary fraction of second:
|
||||
*
|
||||
* x = a * 2^32 / 10^9 = a * 4.294967296
|
||||
*
|
||||
* The range of th_adjustment is +/- 5000PPM so inside a 64bit int
|
||||
* we can only multiply by about 850 without overflowing, that
|
||||
* leaves no suitably precise fractions for multiply before divide.
|
||||
*
|
||||
* Divide before multiply with a fraction of 2199/512 results in a
|
||||
* systematic undercompensation of 10PPM of th_adjustment. On a
|
||||
* 5000PPM adjustment this is a 0.05PPM error. This is acceptable.
|
||||
*
|
||||
* We happily sacrifice the lowest of the 64 bits of our result
|
||||
* to the goddess of code clarity.
|
||||
*
|
||||
*/
|
||||
scale = (u_int64_t)1 << 63;
|
||||
scale += (th->th_adjustment / 1024) * 2199;
|
||||
scale /= th->th_counter->tc_frequency;
|
||||
th->th_scale = scale * 2;
|
||||
|
||||
/*
|
||||
* Now that the struct timehands is again consistent, set the new
|
||||
* generation number, making sure to not make it zero.
|
||||
*/
|
||||
if (++ogen == 0)
|
||||
ogen = 1;
|
||||
th->th_generation = ogen;
|
||||
|
||||
/* Go live with the new struct timehands. */
|
||||
time_second = th->th_microtime.tv_sec;
|
||||
time_uptime = th->th_offset.sec;
|
||||
timehands = th;
|
||||
}
|
||||
|
||||
/* Report or change the active timecounter hardware. */
|
||||
static int
|
||||
sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
|
||||
{
|
||||
char newname[32];
|
||||
struct timecounter *newtc, *tc;
|
||||
int error;
|
||||
|
||||
tc = timecounter;
|
||||
strlcpy(newname, tc->tc_name, sizeof(newname));
|
||||
|
||||
error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
|
||||
if (error != 0 || req->newptr == NULL ||
|
||||
strcmp(newname, tc->tc_name) == 0)
|
||||
return (error);
|
||||
for (newtc = timecounters; newtc != NULL; newtc = newtc->tc_next) {
|
||||
if (strcmp(newname, newtc->tc_name) != 0)
|
||||
continue;
|
||||
|
||||
/* Warm up new timecounter. */
|
||||
(void)newtc->tc_get_timecount(newtc);
|
||||
(void)newtc->tc_get_timecount(newtc);
|
||||
|
||||
timecounter = newtc;
|
||||
return (0);
|
||||
}
|
||||
return (EINVAL);
|
||||
}
|
||||
|
||||
SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
|
||||
0, 0, sysctl_kern_timecounter_hardware, "A",
|
||||
"Timecounter hardware selected");
|
||||
|
||||
|
||||
/* Report or change the active timecounter hardware. */
|
||||
static int
|
||||
sysctl_kern_timecounter_choice(SYSCTL_HANDLER_ARGS)
|
||||
{
|
||||
char buf[32], *spc;
|
||||
struct timecounter *tc;
|
||||
int error;
|
||||
|
||||
spc = "";
|
||||
error = 0;
|
||||
for (tc = timecounters; error == 0 && tc != NULL; tc = tc->tc_next) {
|
||||
sprintf(buf, "%s%s(%d)",
|
||||
spc, tc->tc_name, tc->tc_quality);
|
||||
error = SYSCTL_OUT(req, buf, strlen(buf));
|
||||
spc = " ";
|
||||
}
|
||||
return (error);
|
||||
}
|
||||
|
||||
SYSCTL_PROC(_kern_timecounter, OID_AUTO, choice, CTLTYPE_STRING | CTLFLAG_RD,
|
||||
0, 0, sysctl_kern_timecounter_choice, "A", "Timecounter hardware detected");
|
||||
|
||||
/*
|
||||
* RFC 2783 PPS-API implementation.
|
||||
*/
|
||||
|
||||
int
|
||||
pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
|
||||
{
|
||||
pps_params_t *app;
|
||||
struct pps_fetch_args *fapi;
|
||||
#ifdef PPS_SYNC
|
||||
struct pps_kcbind_args *kapi;
|
||||
#endif
|
||||
|
||||
KASSERT(pps != NULL, ("NULL pps pointer in pps_ioctl"));
|
||||
switch (cmd) {
|
||||
case PPS_IOC_CREATE:
|
||||
return (0);
|
||||
case PPS_IOC_DESTROY:
|
||||
return (0);
|
||||
case PPS_IOC_SETPARAMS:
|
||||
app = (pps_params_t *)data;
|
||||
if (app->mode & ~pps->ppscap)
|
||||
return (EINVAL);
|
||||
pps->ppsparam = *app;
|
||||
return (0);
|
||||
case PPS_IOC_GETPARAMS:
|
||||
app = (pps_params_t *)data;
|
||||
*app = pps->ppsparam;
|
||||
app->api_version = PPS_API_VERS_1;
|
||||
return (0);
|
||||
case PPS_IOC_GETCAP:
|
||||
*(int*)data = pps->ppscap;
|
||||
return (0);
|
||||
case PPS_IOC_FETCH:
|
||||
fapi = (struct pps_fetch_args *)data;
|
||||
if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
|
||||
return (EINVAL);
|
||||
if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
|
||||
return (EOPNOTSUPP);
|
||||
pps->ppsinfo.current_mode = pps->ppsparam.mode;
|
||||
fapi->pps_info_buf = pps->ppsinfo;
|
||||
return (0);
|
||||
case PPS_IOC_KCBIND:
|
||||
#ifdef PPS_SYNC
|
||||
kapi = (struct pps_kcbind_args *)data;
|
||||
/* XXX Only root should be able to do this */
|
||||
if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
|
||||
return (EINVAL);
|
||||
if (kapi->kernel_consumer != PPS_KC_HARDPPS)
|
||||
return (EINVAL);
|
||||
if (kapi->edge & ~pps->ppscap)
|
||||
return (EINVAL);
|
||||
pps->kcmode = kapi->edge;
|
||||
return (0);
|
||||
#else
|
||||
return (EOPNOTSUPP);
|
||||
#endif
|
||||
default:
|
||||
return (ENOIOCTL);
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
pps_init(struct pps_state *pps)
|
||||
{
|
||||
pps->ppscap |= PPS_TSFMT_TSPEC;
|
||||
if (pps->ppscap & PPS_CAPTUREASSERT)
|
||||
pps->ppscap |= PPS_OFFSETASSERT;
|
||||
if (pps->ppscap & PPS_CAPTURECLEAR)
|
||||
pps->ppscap |= PPS_OFFSETCLEAR;
|
||||
}
|
||||
|
||||
void
|
||||
pps_capture(struct pps_state *pps)
|
||||
{
|
||||
struct timehands *th;
|
||||
|
||||
KASSERT(pps != NULL, ("NULL pps pointer in pps_capture"));
|
||||
th = timehands;
|
||||
pps->capgen = th->th_generation;
|
||||
pps->capth = th;
|
||||
pps->capcount = th->th_counter->tc_get_timecount(th->th_counter);
|
||||
if (pps->capgen != th->th_generation)
|
||||
pps->capgen = 0;
|
||||
}
|
||||
|
||||
void
|
||||
pps_event(struct pps_state *pps, int event)
|
||||
{
|
||||
struct bintime bt;
|
||||
struct timespec ts, *tsp, *osp;
|
||||
u_int tcount, *pcount;
|
||||
int foff, fhard;
|
||||
pps_seq_t *pseq;
|
||||
|
||||
KASSERT(pps != NULL, ("NULL pps pointer in pps_event"));
|
||||
/* If the timecounter was wound up underneath us, bail out. */
|
||||
if (pps->capgen == 0 || pps->capgen != pps->capth->th_generation)
|
||||
return;
|
||||
|
||||
/* Things would be easier with arrays. */
|
||||
if (event == PPS_CAPTUREASSERT) {
|
||||
tsp = &pps->ppsinfo.assert_timestamp;
|
||||
osp = &pps->ppsparam.assert_offset;
|
||||
foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
|
||||
fhard = pps->kcmode & PPS_CAPTUREASSERT;
|
||||
pcount = &pps->ppscount[0];
|
||||
pseq = &pps->ppsinfo.assert_sequence;
|
||||
} else {
|
||||
tsp = &pps->ppsinfo.clear_timestamp;
|
||||
osp = &pps->ppsparam.clear_offset;
|
||||
foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
|
||||
fhard = pps->kcmode & PPS_CAPTURECLEAR;
|
||||
pcount = &pps->ppscount[1];
|
||||
pseq = &pps->ppsinfo.clear_sequence;
|
||||
}
|
||||
|
||||
/*
|
||||
* If the timecounter changed, we cannot compare the count values, so
|
||||
* we have to drop the rest of the PPS-stuff until the next event.
|
||||
*/
|
||||
if (pps->ppstc != pps->capth->th_counter) {
|
||||
pps->ppstc = pps->capth->th_counter;
|
||||
*pcount = pps->capcount;
|
||||
pps->ppscount[2] = pps->capcount;
|
||||
return;
|
||||
}
|
||||
|
||||
/* Convert the count to a timespec. */
|
||||
tcount = pps->capcount - pps->capth->th_offset_count;
|
||||
tcount &= pps->capth->th_counter->tc_counter_mask;
|
||||
bt = pps->capth->th_offset;
|
||||
bintime_addx(&bt, pps->capth->th_scale * tcount);
|
||||
bintime_add(&bt, &boottimebin);
|
||||
bintime2timespec(&bt, &ts);
|
||||
|
||||
/* If the timecounter was wound up underneath us, bail out. */
|
||||
if (pps->capgen != pps->capth->th_generation)
|
||||
return;
|
||||
|
||||
*pcount = pps->capcount;
|
||||
(*pseq)++;
|
||||
*tsp = ts;
|
||||
|
||||
if (foff) {
|
||||
timespecadd(tsp, osp);
|
||||
if (tsp->tv_nsec < 0) {
|
||||
tsp->tv_nsec += 1000000000;
|
||||
tsp->tv_sec -= 1;
|
||||
}
|
||||
}
|
||||
#ifdef PPS_SYNC
|
||||
if (fhard) {
|
||||
u_int64_t scale;
|
||||
|
||||
/*
|
||||
* Feed the NTP PLL/FLL.
|
||||
* The FLL wants to know how many (hardware) nanoseconds
|
||||
* elapsed since the previous event.
|
||||
*/
|
||||
tcount = pps->capcount - pps->ppscount[2];
|
||||
pps->ppscount[2] = pps->capcount;
|
||||
tcount &= pps->capth->th_counter->tc_counter_mask;
|
||||
scale = (u_int64_t)1 << 63;
|
||||
scale /= pps->capth->th_counter->tc_frequency;
|
||||
scale *= 2;
|
||||
bt.sec = 0;
|
||||
bt.frac = 0;
|
||||
bintime_addx(&bt, scale * tcount);
|
||||
bintime2timespec(&bt, &ts);
|
||||
hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
* Timecounters need to be updated every so often to prevent the hardware
|
||||
* counter from overflowing. Updating also recalculates the cached values
|
||||
* used by the get*() family of functions, so their precision depends on
|
||||
* the update frequency.
|
||||
*/
|
||||
|
||||
static int tc_tick;
|
||||
SYSCTL_INT(_kern_timecounter, OID_AUTO, tick, CTLFLAG_RD, &tc_tick, 0,
|
||||
"Approximate number of hardclock ticks in a millisecond");
|
||||
|
||||
void
|
||||
tc_ticktock(void)
|
||||
{
|
||||
static int count;
|
||||
static time_t last_calib;
|
||||
|
||||
if (++count < tc_tick)
|
||||
return;
|
||||
count = 0;
|
||||
tc_windup();
|
||||
if (time_uptime != last_calib && !(time_uptime & 0xf)) {
|
||||
cpu_tick_calibrate(0);
|
||||
last_calib = time_uptime;
|
||||
}
|
||||
}
|
||||
|
||||
static void
|
||||
inittimecounter(void *dummy)
|
||||
{
|
||||
u_int p;
|
||||
|
||||
/*
|
||||
* Set the initial timeout to
|
||||
* max(1, <approx. number of hardclock ticks in a millisecond>).
|
||||
* People should probably not use the sysctl to set the timeout
|
||||
* to smaller than its inital value, since that value is the
|
||||
* smallest reasonable one. If they want better timestamps they
|
||||
* should use the non-"get"* functions.
|
||||
*/
|
||||
if (hz > 1000)
|
||||
tc_tick = (hz + 500) / 1000;
|
||||
else
|
||||
tc_tick = 1;
|
||||
p = (tc_tick * 1000000) / hz;
|
||||
printf("Timecounters tick every %d.%03u msec\n", p / 1000, p % 1000);
|
||||
|
||||
/* warm up new timecounter (again) and get rolling. */
|
||||
(void)timecounter->tc_get_timecount(timecounter);
|
||||
(void)timecounter->tc_get_timecount(timecounter);
|
||||
}
|
||||
|
||||
SYSINIT(timecounter, SI_SUB_CLOCKS, SI_ORDER_SECOND, inittimecounter, NULL);
|
||||
|
||||
/* Cpu tick handling -------------------------------------------------*/
|
||||
|
||||
static int cpu_tick_variable;
|
||||
static uint64_t cpu_tick_frequency;
|
||||
|
||||
static uint64_t
|
||||
tc_cpu_ticks(void)
|
||||
{
|
||||
static uint64_t base;
|
||||
static unsigned last;
|
||||
unsigned u;
|
||||
struct timecounter *tc;
|
||||
|
||||
tc = timehands->th_counter;
|
||||
u = tc->tc_get_timecount(tc) & tc->tc_counter_mask;
|
||||
if (u < last)
|
||||
base += (uint64_t)tc->tc_counter_mask + 1;
|
||||
last = u;
|
||||
return (u + base);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function gets called every 16 seconds on only one designated
|
||||
* CPU in the system from hardclock() via tc_ticktock().
|
||||
*
|
||||
* Whenever the real time clock is stepped we get called with reset=1
|
||||
* to make sure we handle suspend/resume and similar events correctly.
|
||||
*/
|
||||
|
||||
static void
|
||||
cpu_tick_calibrate(int reset)
|
||||
{
|
||||
static uint64_t c_last;
|
||||
uint64_t c_this, c_delta;
|
||||
static struct bintime t_last;
|
||||
struct bintime t_this, t_delta;
|
||||
uint32_t divi;
|
||||
|
||||
if (reset) {
|
||||
/* The clock was stepped, abort & reset */
|
||||
t_last.sec = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/* we don't calibrate fixed rate cputicks */
|
||||
if (!cpu_tick_variable)
|
||||
return;
|
||||
|
||||
getbinuptime(&t_this);
|
||||
c_this = cpu_ticks();
|
||||
if (t_last.sec != 0) {
|
||||
c_delta = c_this - c_last;
|
||||
t_delta = t_this;
|
||||
bintime_sub(&t_delta, &t_last);
|
||||
/*
|
||||
* Validate that 16 +/- 1/256 seconds passed.
|
||||
* After division by 16 this gives us a precision of
|
||||
* roughly 250PPM which is sufficient
|
||||
*/
|
||||
if (t_delta.sec > 16 || (
|
||||
t_delta.sec == 16 && t_delta.frac >= (0x01LL << 56))) {
|
||||
/* too long */
|
||||
if (bootverbose)
|
||||
printf("t_delta %ju.%016jx too long\n",
|
||||
(uintmax_t)t_delta.sec,
|
||||
(uintmax_t)t_delta.frac);
|
||||
} else if (t_delta.sec < 15 ||
|
||||
(t_delta.sec == 15 && t_delta.frac <= (0xffLL << 56))) {
|
||||
/* too short */
|
||||
if (bootverbose)
|
||||
printf("t_delta %ju.%016jx too short\n",
|
||||
(uintmax_t)t_delta.sec,
|
||||
(uintmax_t)t_delta.frac);
|
||||
} else {
|
||||
/* just right */
|
||||
/*
|
||||
* Headroom:
|
||||
* 2^(64-20) / 16[s] =
|
||||
* 2^(44) / 16[s] =
|
||||
* 17.592.186.044.416 / 16 =
|
||||
* 1.099.511.627.776 [Hz]
|
||||
*/
|
||||
divi = t_delta.sec << 20;
|
||||
divi |= t_delta.frac >> (64 - 20);
|
||||
c_delta <<= 20;
|
||||
c_delta /= divi;
|
||||
if (c_delta > cpu_tick_frequency) {
|
||||
if (0 && bootverbose)
|
||||
printf("cpu_tick increased to %ju Hz\n",
|
||||
c_delta);
|
||||
cpu_tick_frequency = c_delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
c_last = c_this;
|
||||
t_last = t_this;
|
||||
}
|
||||
|
||||
void
|
||||
set_cputicker(cpu_tick_f *func, uint64_t freq, unsigned var)
|
||||
{
|
||||
|
||||
if (func == NULL) {
|
||||
cpu_ticks = tc_cpu_ticks;
|
||||
} else {
|
||||
cpu_tick_frequency = freq;
|
||||
cpu_tick_variable = var;
|
||||
cpu_ticks = func;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t
|
||||
cpu_tickrate(void)
|
||||
{
|
||||
|
||||
if (cpu_ticks == tc_cpu_ticks)
|
||||
return (tc_getfrequency());
|
||||
return (cpu_tick_frequency);
|
||||
}
|
||||
|
||||
/*
|
||||
* We need to be slightly careful converting cputicks to microseconds.
|
||||
* There is plenty of margin in 64 bits of microseconds (half a million
|
||||
* years) and in 64 bits at 4 GHz (146 years), but if we do a multiply
|
||||
* before divide conversion (to retain precision) we find that the
|
||||
* margin shrinks to 1.5 hours (one millionth of 146y).
|
||||
* With a three prong approach we never lose significant bits, no
|
||||
* matter what the cputick rate and length of timeinterval is.
|
||||
*/
|
||||
|
||||
uint64_t
|
||||
cputick2usec(uint64_t tick)
|
||||
{
|
||||
|
||||
if (tick > 18446744073709551LL) /* floor(2^64 / 1000) */
|
||||
return (tick / (cpu_tickrate() / 1000000LL));
|
||||
else if (tick > 18446744073709LL) /* floor(2^64 / 1000000) */
|
||||
return ((tick * 1000LL) / (cpu_tickrate() / 1000LL));
|
||||
else
|
||||
return ((tick * 1000000LL) / cpu_tickrate());
|
||||
}
|
||||
|
||||
cpu_tick_f *cpu_ticks = tc_cpu_ticks;
|
@ -272,8 +272,27 @@ struct clockinfo {
|
||||
void inittodr(time_t base);
|
||||
void resettodr(void);
|
||||
|
||||
#ifndef __rtems__
|
||||
extern time_t time_second;
|
||||
extern time_t time_uptime;
|
||||
#else /* __rtems__ */
|
||||
#include <rtems.h>
|
||||
|
||||
static inline time_t
|
||||
rtems_bsd_time_second(void)
|
||||
{
|
||||
return time(NULL);
|
||||
}
|
||||
|
||||
static inline time_t
|
||||
rtems_bsd_time_uptime(void)
|
||||
{
|
||||
return rtems_clock_get_uptime_seconds();
|
||||
}
|
||||
|
||||
#define time_second rtems_bsd_time_second()
|
||||
#define time_uptime rtems_bsd_time_uptime()
|
||||
#endif /* __rtems__ */
|
||||
extern struct timeval boottime;
|
||||
|
||||
/*
|
||||
@ -298,21 +317,67 @@ extern struct timeval boottime;
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef __rtems__
|
||||
void binuptime(struct bintime *bt);
|
||||
#else /* __rtems__ */
|
||||
static inline void
|
||||
binuptime(struct bintime *bt)
|
||||
{
|
||||
struct timeval tv;
|
||||
|
||||
rtems_clock_get_uptime_timeval(&tv);
|
||||
timeval2bintime(&tv, bt);
|
||||
}
|
||||
#endif /* __rtems__ */
|
||||
void nanouptime(struct timespec *tsp);
|
||||
void microuptime(struct timeval *tvp);
|
||||
|
||||
#ifndef __rtems__
|
||||
void bintime(struct bintime *bt);
|
||||
#else /* __rtems__ */
|
||||
static inline void
|
||||
bintime(struct bintime *bt)
|
||||
{
|
||||
struct timeval tv;
|
||||
|
||||
gettimeofday(&tv, NULL);
|
||||
timeval2bintime(&tv, bt);
|
||||
}
|
||||
#endif /* __rtems__ */
|
||||
void nanotime(struct timespec *tsp);
|
||||
#ifndef __rtems__
|
||||
void microtime(struct timeval *tvp);
|
||||
#else /* __rtems__ */
|
||||
static inline void
|
||||
microtime(struct timeval *tvp)
|
||||
{
|
||||
gettimeofday(tvp, NULL);
|
||||
}
|
||||
#endif /* __rtems__ */
|
||||
|
||||
void getbinuptime(struct bintime *bt);
|
||||
void getnanouptime(struct timespec *tsp);
|
||||
#ifndef __rtems__
|
||||
void getmicrouptime(struct timeval *tvp);
|
||||
#else /* __rtems__ */
|
||||
static inline void
|
||||
getmicrouptime(struct timeval *tvp)
|
||||
{
|
||||
rtems_clock_get_uptime_timeval(tvp);
|
||||
}
|
||||
#endif /* __rtems__ */
|
||||
|
||||
void getbintime(struct bintime *bt);
|
||||
void getnanotime(struct timespec *tsp);
|
||||
#ifndef __rtems__
|
||||
void getmicrotime(struct timeval *tvp);
|
||||
#else /* __rtems__ */
|
||||
static inline void
|
||||
getmicrotime(struct timeval *tvp)
|
||||
{
|
||||
microtime(tvp);
|
||||
}
|
||||
#endif /* __rtems__ */
|
||||
|
||||
/* Other functions */
|
||||
int itimerdecr(struct itimerval *itp, int usec);
|
||||
|
@ -64,6 +64,8 @@ int hz;
|
||||
int tick;
|
||||
int maxusers; /* base tunable */
|
||||
|
||||
struct timeval boottime;
|
||||
|
||||
rtems_status_code
|
||||
rtems_bsd_initialize(void)
|
||||
{
|
||||
@ -73,6 +75,8 @@ rtems_bsd_initialize(void)
|
||||
tick = 1000000 / hz;
|
||||
maxusers = 1;
|
||||
|
||||
gettimeofday(&boottime, NULL);
|
||||
|
||||
sc = rtems_timer_initiate_server(
|
||||
BSD_TASK_PRIORITY_TIMER,
|
||||
BSD_MINIMUM_TASK_STACK_SIZE,
|
||||
|
Loading…
x
Reference in New Issue
Block a user