mirror of
https://git.rtems.org/rtems-libbsd/
synced 2025-10-14 09:45:42 +08:00
Update to FreeBSD head 2016-08-23
Git mirror commit 9fe7c416e6abb28b1398fd3e5687099846800cfd.
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
/*-
|
||||
* Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org>
|
||||
* Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
|
||||
* Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
|
||||
* All rights reserved.
|
||||
*
|
||||
@@ -28,6 +28,8 @@
|
||||
*
|
||||
*/
|
||||
|
||||
#include <sys/_task.h>
|
||||
|
||||
/*
|
||||
* This file includes definitions, structures, prototypes, and inlines that
|
||||
* should not be used outside of the actual implementation of UMA.
|
||||
@@ -45,20 +47,9 @@
|
||||
*
|
||||
* The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
|
||||
* be allocated off the page from a special slab zone. The free list within a
|
||||
* slab is managed with a linked list of indices, which are 8 bit values. If
|
||||
* UMA_SLAB_SIZE is defined to be too large I will have to switch to 16bit
|
||||
* values. Currently on alpha you can get 250 or so 32 byte items and on x86
|
||||
* you can get 250 or so 16byte items. For item sizes that would yield more
|
||||
* than 10% memory waste we potentially allocate a separate uma_slab_t if this
|
||||
* will improve the number of items per slab that will fit.
|
||||
*
|
||||
* Other potential space optimizations are storing the 8bit of linkage in space
|
||||
* wasted between items due to alignment problems. This may yield a much better
|
||||
* memory footprint for certain sizes of objects. Another alternative is to
|
||||
* increase the UMA_SLAB_SIZE, or allow for dynamic slab sizes. I prefer
|
||||
* dynamic slab sizes because we could stick with 8 bit indices and only use
|
||||
* large slab sizes for zones with a lot of waste per slab. This may create
|
||||
* inefficiencies in the vm subsystem due to fragmentation in the address space.
|
||||
* slab is managed with a bitmask. For item sizes that would yield more than
|
||||
* 10% memory waste we potentially allocate a separate uma_slab_t if this will
|
||||
* improve the number of items per slab that will fit.
|
||||
*
|
||||
* The only really gross cases, with regards to memory waste, are for those
|
||||
* items that are just over half the page size. You can get nearly 50% waste,
|
||||
@@ -119,9 +110,11 @@
|
||||
#define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
|
||||
|
||||
#define UMA_BOOT_PAGES 64 /* Pages allocated for startup */
|
||||
#define UMA_BOOT_PAGES_ZONES 32 /* Multiplier for pages to reserve */
|
||||
/* if uma_zone > PAGE_SIZE */
|
||||
|
||||
/* Max waste before going to off page slab management */
|
||||
#define UMA_MAX_WASTE (UMA_SLAB_SIZE / 10)
|
||||
/* Max waste percentage before going to off page slab management */
|
||||
#define UMA_MAX_WASTE 10
|
||||
|
||||
/*
|
||||
* I doubt there will be many cases where this is exceeded. This is the initial
|
||||
@@ -133,14 +126,9 @@
|
||||
/*
|
||||
* I should investigate other hashing algorithms. This should yield a low
|
||||
* number of collisions if the pages are relatively contiguous.
|
||||
*
|
||||
* This is the same algorithm that most processor caches use.
|
||||
*
|
||||
* I'm shifting and masking instead of % because it should be faster.
|
||||
*/
|
||||
|
||||
#define UMA_HASH(h, s) ((((unsigned long)s) >> UMA_SLAB_SHIFT) & \
|
||||
(h)->uh_hashmask)
|
||||
#define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
|
||||
|
||||
#define UMA_HASH_INSERT(h, s, mem) \
|
||||
SLIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
|
||||
@@ -184,8 +172,8 @@ typedef struct uma_bucket * uma_bucket_t;
|
||||
struct uma_cache {
|
||||
uma_bucket_t uc_freebucket; /* Bucket we're freeing to */
|
||||
uma_bucket_t uc_allocbucket; /* Bucket to allocate from */
|
||||
u_int64_t uc_allocs; /* Count of allocations */
|
||||
u_int64_t uc_frees; /* Count of frees */
|
||||
uint64_t uc_allocs; /* Count of allocations */
|
||||
uint64_t uc_frees; /* Count of frees */
|
||||
} UMA_ALIGN;
|
||||
|
||||
typedef struct uma_cache * uma_cache_t;
|
||||
@@ -197,45 +185,54 @@ typedef struct uma_cache * uma_cache_t;
|
||||
*
|
||||
*/
|
||||
struct uma_keg {
|
||||
LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */
|
||||
|
||||
struct mtx uk_lock; /* Lock for the keg */
|
||||
struct mtx_padalign uk_lock; /* Lock for the keg */
|
||||
struct uma_hash uk_hash;
|
||||
|
||||
const char *uk_name; /* Name of creating zone. */
|
||||
LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */
|
||||
LIST_HEAD(,uma_slab) uk_part_slab; /* partially allocated slabs */
|
||||
LIST_HEAD(,uma_slab) uk_free_slab; /* empty slab list */
|
||||
LIST_HEAD(,uma_slab) uk_full_slab; /* full slabs */
|
||||
|
||||
u_int32_t uk_recurse; /* Allocation recursion count */
|
||||
u_int32_t uk_align; /* Alignment mask */
|
||||
u_int32_t uk_pages; /* Total page count */
|
||||
u_int32_t uk_free; /* Count of items free in slabs */
|
||||
u_int32_t uk_size; /* Requested size of each item */
|
||||
u_int32_t uk_rsize; /* Real size of each item */
|
||||
u_int32_t uk_maxpages; /* Maximum number of pages to alloc */
|
||||
uint32_t uk_align; /* Alignment mask */
|
||||
uint32_t uk_pages; /* Total page count */
|
||||
uint32_t uk_free; /* Count of items free in slabs */
|
||||
uint32_t uk_reserve; /* Number of reserved items. */
|
||||
uint32_t uk_size; /* Requested size of each item */
|
||||
uint32_t uk_rsize; /* Real size of each item */
|
||||
uint32_t uk_maxpages; /* Maximum number of pages to alloc */
|
||||
|
||||
uma_init uk_init; /* Keg's init routine */
|
||||
uma_fini uk_fini; /* Keg's fini routine */
|
||||
uma_alloc uk_allocf; /* Allocation function */
|
||||
uma_free uk_freef; /* Free routine */
|
||||
|
||||
struct vm_object *uk_obj; /* Zone specific object */
|
||||
vm_offset_t uk_kva; /* Base kva for zones with objs */
|
||||
u_long uk_offset; /* Next free offset from base KVA */
|
||||
vm_offset_t uk_kva; /* Zone base KVA */
|
||||
uma_zone_t uk_slabzone; /* Slab zone backing us, if OFFPAGE */
|
||||
|
||||
u_int16_t uk_pgoff; /* Offset to uma_slab struct */
|
||||
u_int16_t uk_ppera; /* pages per allocation from backend */
|
||||
u_int16_t uk_ipers; /* Items per slab */
|
||||
u_int32_t uk_flags; /* Internal flags */
|
||||
uint16_t uk_slabsize; /* Slab size for this keg */
|
||||
uint16_t uk_pgoff; /* Offset to uma_slab struct */
|
||||
uint16_t uk_ppera; /* pages per allocation from backend */
|
||||
uint16_t uk_ipers; /* Items per slab */
|
||||
uint32_t uk_flags; /* Internal flags */
|
||||
|
||||
/* Least used fields go to the last cache line. */
|
||||
const char *uk_name; /* Name of creating zone. */
|
||||
LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */
|
||||
};
|
||||
typedef struct uma_keg * uma_keg_t;
|
||||
|
||||
/* Page management structure */
|
||||
/*
|
||||
* Free bits per-slab.
|
||||
*/
|
||||
#define SLAB_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT)
|
||||
BITSET_DEFINE(slabbits, SLAB_SETSIZE);
|
||||
|
||||
/* Sorry for the union, but space efficiency is important */
|
||||
struct uma_slab_head {
|
||||
/*
|
||||
* The slab structure manages a single contiguous allocation from backing
|
||||
* store and subdivides it into individually allocatable items.
|
||||
*/
|
||||
struct uma_slab {
|
||||
uma_keg_t us_keg; /* Keg we live in */
|
||||
union {
|
||||
LIST_ENTRY(uma_slab) _us_link; /* slabs in zone */
|
||||
@@ -244,58 +241,24 @@ struct uma_slab_head {
|
||||
#endif /* __rtems__ */
|
||||
} us_type;
|
||||
SLIST_ENTRY(uma_slab) us_hlink; /* Link for hash table */
|
||||
u_int8_t *us_data; /* First item */
|
||||
u_int8_t us_flags; /* Page flags see uma.h */
|
||||
u_int8_t us_freecount; /* How many are free? */
|
||||
u_int8_t us_firstfree; /* First free item index */
|
||||
uint8_t *us_data; /* First item */
|
||||
struct slabbits us_free; /* Free bitmask. */
|
||||
#ifdef INVARIANTS
|
||||
struct slabbits us_debugfree; /* Debug bitmask. */
|
||||
#endif
|
||||
uint16_t us_freecount; /* How many are free? */
|
||||
uint8_t us_flags; /* Page flags see uma.h */
|
||||
uint8_t us_pad; /* Pad to 32bits, unused. */
|
||||
};
|
||||
|
||||
/* The standard slab structure */
|
||||
struct uma_slab {
|
||||
struct uma_slab_head us_head; /* slab header data */
|
||||
struct {
|
||||
u_int8_t us_item;
|
||||
} us_freelist[1]; /* actual number bigger */
|
||||
};
|
||||
|
||||
/*
|
||||
* The slab structure for UMA_ZONE_REFCNT zones for whose items we
|
||||
* maintain reference counters in the slab for.
|
||||
*/
|
||||
struct uma_slab_refcnt {
|
||||
struct uma_slab_head us_head; /* slab header data */
|
||||
struct {
|
||||
u_int8_t us_item;
|
||||
u_int32_t us_refcnt;
|
||||
} us_freelist[1]; /* actual number bigger */
|
||||
};
|
||||
|
||||
#define us_keg us_head.us_keg
|
||||
#define us_link us_head.us_type._us_link
|
||||
#define us_link us_type._us_link
|
||||
#ifndef __rtems__
|
||||
#define us_size us_head.us_type._us_size
|
||||
#define us_size us_type._us_size
|
||||
#endif /* __rtems__ */
|
||||
#define us_hlink us_head.us_hlink
|
||||
#define us_data us_head.us_data
|
||||
#define us_flags us_head.us_flags
|
||||
#define us_freecount us_head.us_freecount
|
||||
#define us_firstfree us_head.us_firstfree
|
||||
|
||||
typedef struct uma_slab * uma_slab_t;
|
||||
typedef struct uma_slab_refcnt * uma_slabrefcnt_t;
|
||||
typedef uma_slab_t (*uma_slaballoc)(uma_zone_t, uma_keg_t, int);
|
||||
|
||||
|
||||
/*
|
||||
* These give us the size of one free item reference within our corresponding
|
||||
* uma_slab structures, so that our calculations during zone setup are correct
|
||||
* regardless of what the compiler decides to do with padding the structure
|
||||
* arrays within uma_slab.
|
||||
*/
|
||||
#define UMA_FRITM_SZ (sizeof(struct uma_slab) - sizeof(struct uma_slab_head))
|
||||
#define UMA_FRITMREF_SZ (sizeof(struct uma_slab_refcnt) - \
|
||||
sizeof(struct uma_slab_head))
|
||||
|
||||
struct uma_klink {
|
||||
LIST_ENTRY(uma_klink) kl_link;
|
||||
uma_keg_t kl_keg;
|
||||
@@ -309,12 +272,12 @@ typedef struct uma_klink *uma_klink_t;
|
||||
*
|
||||
*/
|
||||
struct uma_zone {
|
||||
const char *uz_name; /* Text name of the zone */
|
||||
struct mtx *uz_lock; /* Lock for the zone (keg's lock) */
|
||||
struct mtx_padalign uz_lock; /* Lock for the zone */
|
||||
struct mtx_padalign *uz_lockptr;
|
||||
const char *uz_name; /* Text name of the zone */
|
||||
|
||||
LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */
|
||||
LIST_HEAD(,uma_bucket) uz_full_bucket; /* full buckets */
|
||||
LIST_HEAD(,uma_bucket) uz_free_bucket; /* Buckets for frees */
|
||||
LIST_HEAD(,uma_bucket) uz_buckets; /* full buckets */
|
||||
|
||||
LIST_HEAD(,uma_klink) uz_kegs; /* List of kegs. */
|
||||
struct uma_klink uz_klink; /* klink for first keg. */
|
||||
@@ -323,17 +286,26 @@ struct uma_zone {
|
||||
uma_ctor uz_ctor; /* Constructor for each allocation */
|
||||
uma_dtor uz_dtor; /* Destructor */
|
||||
uma_init uz_init; /* Initializer for each item */
|
||||
uma_fini uz_fini; /* Discards memory */
|
||||
uma_fini uz_fini; /* Finalizer for each item. */
|
||||
uma_import uz_import; /* Import new memory to cache. */
|
||||
uma_release uz_release; /* Release memory from cache. */
|
||||
void *uz_arg; /* Import/release argument. */
|
||||
|
||||
u_int32_t uz_flags; /* Flags inherited from kegs */
|
||||
u_int32_t uz_size; /* Size inherited from kegs */
|
||||
uint32_t uz_flags; /* Flags inherited from kegs */
|
||||
uint32_t uz_size; /* Size inherited from kegs */
|
||||
|
||||
u_int64_t uz_allocs UMA_ALIGN; /* Total number of allocations */
|
||||
u_int64_t uz_frees; /* Total number of frees */
|
||||
u_int64_t uz_fails; /* Total number of alloc failures */
|
||||
u_int64_t uz_sleeps; /* Total number of alloc sleeps */
|
||||
uint16_t uz_fills; /* Outstanding bucket fills */
|
||||
uint16_t uz_count; /* Highest value ub_ptr can have */
|
||||
volatile u_long uz_allocs UMA_ALIGN; /* Total number of allocations */
|
||||
volatile u_long uz_fails; /* Total number of alloc failures */
|
||||
volatile u_long uz_frees; /* Total number of frees */
|
||||
uint64_t uz_sleeps; /* Total number of alloc sleeps */
|
||||
uint16_t uz_count; /* Amount of items in full bucket */
|
||||
uint16_t uz_count_min; /* Minimal amount of items there */
|
||||
|
||||
/* The next two fields are used to print a rate-limited warnings. */
|
||||
const char *uz_warning; /* Warning to print on failure */
|
||||
struct timeval uz_ratecheck; /* Warnings rate-limiting */
|
||||
|
||||
struct task uz_maxaction; /* Task to run when at limit */
|
||||
|
||||
/*
|
||||
* This HAS to be the last item because we adjust the zone size
|
||||
@@ -345,23 +317,31 @@ struct uma_zone {
|
||||
/*
|
||||
* These flags must not overlap with the UMA_ZONE flags specified in uma.h.
|
||||
*/
|
||||
#define UMA_ZFLAG_BUCKET 0x02000000 /* Bucket zone. */
|
||||
#define UMA_ZFLAG_MULTI 0x04000000 /* Multiple kegs in the zone. */
|
||||
#define UMA_ZFLAG_DRAINING 0x08000000 /* Running zone_drain. */
|
||||
#define UMA_ZFLAG_PRIVALLOC 0x10000000 /* Use uz_allocf. */
|
||||
#define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */
|
||||
#define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */
|
||||
#define UMA_ZFLAG_FULL 0x40000000 /* Reached uz_maxpages */
|
||||
#define UMA_ZFLAG_CACHEONLY 0x80000000 /* Don't ask VM for buckets. */
|
||||
|
||||
#define UMA_ZFLAG_INHERIT (UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | \
|
||||
UMA_ZFLAG_BUCKET)
|
||||
#define UMA_ZFLAG_INHERIT \
|
||||
(UMA_ZFLAG_INTERNAL | UMA_ZFLAG_CACHEONLY | UMA_ZFLAG_BUCKET)
|
||||
|
||||
static inline uma_keg_t
|
||||
zone_first_keg(uma_zone_t zone)
|
||||
{
|
||||
uma_klink_t klink;
|
||||
|
||||
klink = LIST_FIRST(&zone->uz_kegs);
|
||||
return (klink != NULL) ? klink->kl_keg : NULL;
|
||||
}
|
||||
|
||||
#undef UMA_ALIGN
|
||||
|
||||
#ifdef _KERNEL
|
||||
/* Internal prototypes */
|
||||
static __inline uma_slab_t hash_sfind(struct uma_hash *hash, u_int8_t *data);
|
||||
void *uma_large_malloc(int size, int wait);
|
||||
static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
|
||||
void *uma_large_malloc(vm_size_t size, int wait);
|
||||
void uma_large_free(uma_slab_t slab);
|
||||
|
||||
/* Lock Macros */
|
||||
@@ -375,12 +355,25 @@ void uma_large_free(uma_slab_t slab);
|
||||
mtx_init(&(k)->uk_lock, (k)->uk_name, \
|
||||
"UMA zone", MTX_DEF | MTX_DUPOK); \
|
||||
} while (0)
|
||||
|
||||
|
||||
#define KEG_LOCK_FINI(k) mtx_destroy(&(k)->uk_lock)
|
||||
#define KEG_LOCK(k) mtx_lock(&(k)->uk_lock)
|
||||
#define KEG_UNLOCK(k) mtx_unlock(&(k)->uk_lock)
|
||||
#define ZONE_LOCK(z) mtx_lock((z)->uz_lock)
|
||||
#define ZONE_UNLOCK(z) mtx_unlock((z)->uz_lock)
|
||||
|
||||
#define ZONE_LOCK_INIT(z, lc) \
|
||||
do { \
|
||||
if ((lc)) \
|
||||
mtx_init(&(z)->uz_lock, (z)->uz_name, \
|
||||
(z)->uz_name, MTX_DEF | MTX_DUPOK); \
|
||||
else \
|
||||
mtx_init(&(z)->uz_lock, (z)->uz_name, \
|
||||
"UMA zone", MTX_DEF | MTX_DUPOK); \
|
||||
} while (0)
|
||||
|
||||
#define ZONE_LOCK(z) mtx_lock((z)->uz_lockptr)
|
||||
#define ZONE_TRYLOCK(z) mtx_trylock((z)->uz_lockptr)
|
||||
#define ZONE_UNLOCK(z) mtx_unlock((z)->uz_lockptr)
|
||||
#define ZONE_LOCK_FINI(z) mtx_destroy(&(z)->uz_lock)
|
||||
|
||||
/*
|
||||
* Find a slab within a hash table. This is used for OFFPAGE zones to lookup
|
||||
@@ -394,7 +387,7 @@ void uma_large_free(uma_slab_t slab);
|
||||
* A pointer to a slab if successful, else NULL.
|
||||
*/
|
||||
static __inline uma_slab_t
|
||||
hash_sfind(struct uma_hash *hash, u_int8_t *data)
|
||||
hash_sfind(struct uma_hash *hash, uint8_t *data)
|
||||
{
|
||||
uma_slab_t slab;
|
||||
int hval;
|
||||
@@ -402,7 +395,7 @@ hash_sfind(struct uma_hash *hash, u_int8_t *data)
|
||||
hval = UMA_HASH(hash, data);
|
||||
|
||||
SLIST_FOREACH(slab, &hash->uh_slab_hash[hval], us_hlink) {
|
||||
if ((u_int8_t *)slab->us_data == data)
|
||||
if ((uint8_t *)slab->us_data == data)
|
||||
return (slab);
|
||||
}
|
||||
return (NULL);
|
||||
@@ -416,15 +409,9 @@ vtoslab(vm_offset_t va)
|
||||
{
|
||||
#ifndef __rtems__
|
||||
vm_page_t p;
|
||||
uma_slab_t slab;
|
||||
|
||||
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
|
||||
slab = (uma_slab_t )p->object;
|
||||
|
||||
if (p->flags & PG_SLAB)
|
||||
return (slab);
|
||||
else
|
||||
return (NULL);
|
||||
return ((uma_slab_t)p->plinks.s.pv);
|
||||
#else /* __rtems__ */
|
||||
return (rtems_bsd_page_get_object((void *)va));
|
||||
#endif /* __rtems__ */
|
||||
@@ -437,32 +424,20 @@ vsetslab(vm_offset_t va, uma_slab_t slab)
|
||||
vm_page_t p;
|
||||
|
||||
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
|
||||
p->object = (vm_object_t)slab;
|
||||
p->flags |= PG_SLAB;
|
||||
p->plinks.s.pv = slab;
|
||||
#else /* __rtems__ */
|
||||
rtems_bsd_page_set_object((void *)va, slab);
|
||||
#endif /* __rtems__ */
|
||||
}
|
||||
|
||||
#ifndef __rtems__
|
||||
static __inline void
|
||||
vsetobj(vm_offset_t va, vm_object_t obj)
|
||||
{
|
||||
vm_page_t p;
|
||||
|
||||
p = PHYS_TO_VM_PAGE(pmap_kextract(va));
|
||||
p->object = obj;
|
||||
p->flags &= ~PG_SLAB;
|
||||
}
|
||||
#endif /* __rtems__ */
|
||||
|
||||
/*
|
||||
* The following two functions may be defined by architecture specific code
|
||||
* if they can provide more effecient allocation functions. This is useful
|
||||
* if they can provide more efficient allocation functions. This is useful
|
||||
* for using direct mapped addresses.
|
||||
*/
|
||||
void *uma_small_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait);
|
||||
void uma_small_free(void *mem, int size, u_int8_t flags);
|
||||
void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag,
|
||||
int wait);
|
||||
void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
|
||||
#endif /* _KERNEL */
|
||||
|
||||
#endif /* VM_UMA_INT_H */
|
||||
|
Reference in New Issue
Block a user