mirror of
https://git.rtems.org/rtems-libbsd/
synced 2025-10-17 23:50:27 +08:00
Separate RTEMS Specific Files from Those Direct from FreeBSD
This commit is contained in:
455
rtemsbsd/src/rtems-bsd-bus-dma.c
Normal file
455
rtemsbsd/src/rtems-bsd-bus-dma.c
Normal file
@@ -0,0 +1,455 @@
|
||||
/**
|
||||
* @file
|
||||
*
|
||||
* @ingroup rtems_bsd_rtems
|
||||
*
|
||||
* @brief TODO.
|
||||
*
|
||||
* File origin from FreeBSD 'sys/powerpc/powerpc/busdma_machdep.c'.
|
||||
*/
|
||||
|
||||
/*-
|
||||
* Copyright (c) 2009, 2010 embedded brains GmbH. All rights reserved.
|
||||
*
|
||||
* embedded brains GmbH
|
||||
* Obere Lagerstr. 30
|
||||
* 82178 Puchheim
|
||||
* Germany
|
||||
* <rtems@embedded-brains.de>
|
||||
*
|
||||
* Copyright (c) 2004 Olivier Houchard
|
||||
* Copyright (c) 2002 Peter Grehan
|
||||
* Copyright (c) 1997, 1998 Justin T. Gibbs.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions, and the following disclaimer,
|
||||
* without modification, immediately at the beginning of the file.
|
||||
* 2. The name of the author may not be used to endorse or promote products
|
||||
* derived from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
||||
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <rtems/freebsd/machine/rtems-bsd-config.h>
|
||||
#include <rtems/freebsd/machine/rtems-bsd-cache.h>
|
||||
#include <rtems/malloc.h>
|
||||
|
||||
#include <rtems/freebsd/sys/param.h>
|
||||
#include <rtems/freebsd/sys/types.h>
|
||||
#include <rtems/freebsd/sys/lock.h>
|
||||
#include <rtems/freebsd/sys/mutex.h>
|
||||
#include <rtems/freebsd/sys/systm.h>
|
||||
#include <rtems/freebsd/sys/malloc.h>
|
||||
#include <rtems/freebsd/machine/atomic.h>
|
||||
#include <rtems/freebsd/machine/bus.h>
|
||||
|
||||
#ifdef CPU_DATA_CACHE_ALIGNMENT
|
||||
#define CLSZ ((uintptr_t) CPU_DATA_CACHE_ALIGNMENT)
|
||||
#define CLMASK (CLSZ - (uintptr_t) 1)
|
||||
#endif
|
||||
|
||||
struct bus_dma_tag {
|
||||
bus_dma_tag_t parent;
|
||||
bus_size_t alignment;
|
||||
bus_size_t boundary;
|
||||
bus_addr_t lowaddr;
|
||||
bus_addr_t highaddr;
|
||||
bus_dma_filter_t *filter;
|
||||
void *filterarg;
|
||||
bus_size_t maxsize;
|
||||
int nsegments;
|
||||
bus_size_t maxsegsz;
|
||||
int flags;
|
||||
int ref_count;
|
||||
int map_count;
|
||||
bus_dma_lock_t *lockfunc;
|
||||
void *lockfuncarg;
|
||||
};
|
||||
|
||||
struct bus_dmamap {
|
||||
void *buffer_begin;
|
||||
bus_size_t buffer_size;
|
||||
};
|
||||
|
||||
/*
|
||||
* Convenience function for manipulating driver locks from busdma (during
|
||||
* busdma_swi, for example). Drivers that don't provide their own locks
|
||||
* should specify &Giant to dmat->lockfuncarg. Drivers that use their own
|
||||
* non-mutex locking scheme don't have to use this at all.
|
||||
*/
|
||||
void
|
||||
busdma_lock_mutex(void *arg, bus_dma_lock_op_t op)
|
||||
{
|
||||
struct mtx *dmtx;
|
||||
|
||||
dmtx = (struct mtx *)arg;
|
||||
switch (op) {
|
||||
case BUS_DMA_LOCK:
|
||||
mtx_lock(dmtx);
|
||||
break;
|
||||
case BUS_DMA_UNLOCK:
|
||||
mtx_unlock(dmtx);
|
||||
break;
|
||||
default:
|
||||
panic("Unknown operation 0x%x for busdma_lock_mutex!", op);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* dflt_lock should never get called. It gets put into the dma tag when
|
||||
* lockfunc == NULL, which is only valid if the maps that are associated
|
||||
* with the tag are meant to never be defered.
|
||||
* XXX Should have a way to identify which driver is responsible here.
|
||||
*/
|
||||
static void
|
||||
dflt_lock(void *arg, bus_dma_lock_op_t op)
|
||||
{
|
||||
panic("driver error: busdma dflt_lock called");
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate a device specific dma_tag.
|
||||
*/
|
||||
int
|
||||
bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
|
||||
bus_size_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
|
||||
bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize,
|
||||
int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
|
||||
void *lockfuncarg, bus_dma_tag_t *dmat)
|
||||
{
|
||||
bus_dma_tag_t newtag;
|
||||
int error = 0;
|
||||
|
||||
/* Return a NULL tag on failure */
|
||||
*dmat = NULL;
|
||||
|
||||
newtag = malloc(sizeof(*newtag), M_DEVBUF, M_NOWAIT | M_ZERO);
|
||||
if (newtag == NULL)
|
||||
return (ENOMEM);
|
||||
|
||||
newtag->parent = parent;
|
||||
newtag->alignment = alignment;
|
||||
newtag->boundary = boundary;
|
||||
newtag->lowaddr = lowaddr;
|
||||
newtag->highaddr = highaddr;
|
||||
newtag->filter = filter;
|
||||
newtag->filterarg = filterarg;
|
||||
newtag->maxsize = maxsize;
|
||||
newtag->nsegments = nsegments;
|
||||
newtag->maxsegsz = maxsegsz;
|
||||
newtag->flags = flags;
|
||||
newtag->ref_count = 1; /* Count ourself */
|
||||
newtag->map_count = 0;
|
||||
if (lockfunc != NULL) {
|
||||
newtag->lockfunc = lockfunc;
|
||||
newtag->lockfuncarg = lockfuncarg;
|
||||
} else {
|
||||
newtag->lockfunc = dflt_lock;
|
||||
newtag->lockfuncarg = NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Take into account any restrictions imposed by our parent tag
|
||||
*/
|
||||
if (parent != NULL) {
|
||||
newtag->lowaddr = min(parent->lowaddr, newtag->lowaddr);
|
||||
newtag->highaddr = max(parent->highaddr, newtag->highaddr);
|
||||
if (newtag->boundary == 0)
|
||||
newtag->boundary = parent->boundary;
|
||||
else if (parent->boundary != 0)
|
||||
newtag->boundary = MIN(parent->boundary,
|
||||
newtag->boundary);
|
||||
if (newtag->filter == NULL) {
|
||||
/*
|
||||
* Short circuit looking at our parent directly
|
||||
* since we have encapsulated all of its information
|
||||
*/
|
||||
newtag->filter = parent->filter;
|
||||
newtag->filterarg = parent->filterarg;
|
||||
newtag->parent = parent->parent;
|
||||
}
|
||||
if (newtag->parent != NULL)
|
||||
atomic_add_int(&parent->ref_count, 1);
|
||||
}
|
||||
|
||||
*dmat = newtag;
|
||||
return (error);
|
||||
}
|
||||
|
||||
int
|
||||
bus_dma_tag_destroy(bus_dma_tag_t dmat)
|
||||
{
|
||||
if (dmat != NULL) {
|
||||
|
||||
if (dmat->map_count != 0)
|
||||
return (EBUSY);
|
||||
|
||||
while (dmat != NULL) {
|
||||
bus_dma_tag_t parent;
|
||||
|
||||
parent = dmat->parent;
|
||||
atomic_subtract_int(&dmat->ref_count, 1);
|
||||
if (dmat->ref_count == 0) {
|
||||
free(dmat, M_DEVBUF);
|
||||
/*
|
||||
* Last reference count, so
|
||||
* release our reference
|
||||
* count on our parent.
|
||||
*/
|
||||
dmat = parent;
|
||||
} else
|
||||
dmat = NULL;
|
||||
}
|
||||
}
|
||||
return (0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate a handle for mapping from kva/uva/physical
|
||||
* address space into bus device space.
|
||||
*/
|
||||
int
|
||||
bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
|
||||
{
|
||||
*mapp = malloc(sizeof(**mapp), M_DEVBUF, M_NOWAIT | M_ZERO);
|
||||
if (*mapp == NULL) {
|
||||
return ENOMEM;
|
||||
}
|
||||
|
||||
dmat->map_count++;
|
||||
|
||||
return (0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Destroy a handle for mapping from kva/uva/physical
|
||||
* address space into bus device space.
|
||||
*/
|
||||
int
|
||||
bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
|
||||
{
|
||||
free(map, M_DEVBUF);
|
||||
|
||||
dmat->map_count--;
|
||||
|
||||
return (0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate a piece of memory that can be efficiently mapped into
|
||||
* bus device space based on the constraints lited in the dma tag.
|
||||
* A dmamap to for use with dmamap_load is also allocated.
|
||||
*/
|
||||
int
|
||||
bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
|
||||
bus_dmamap_t *mapp)
|
||||
{
|
||||
*mapp = malloc(sizeof(**mapp), M_DEVBUF, M_NOWAIT | M_ZERO);
|
||||
if (*mapp == NULL) {
|
||||
return ENOMEM;
|
||||
}
|
||||
|
||||
*vaddr = rtems_heap_allocate_aligned_with_boundary(dmat->maxsize, dmat->alignment, dmat->boundary);
|
||||
if (*vaddr == NULL) {
|
||||
free(*mapp, M_DEVBUF);
|
||||
|
||||
return ENOMEM;
|
||||
}
|
||||
|
||||
(*mapp)->buffer_begin = *vaddr;
|
||||
(*mapp)->buffer_size = dmat->maxsize;
|
||||
|
||||
if ((flags & BUS_DMA_ZERO) != 0) {
|
||||
memset(*vaddr, 0, dmat->maxsize);
|
||||
}
|
||||
|
||||
return (0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Free a piece of memory and it's allocated dmamap, that was allocated
|
||||
* via bus_dmamem_alloc. Make the same choice for free/contigfree.
|
||||
*/
|
||||
void
|
||||
bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
|
||||
{
|
||||
free(vaddr, M_RTEMS_HEAP);
|
||||
free(map, M_DEVBUF);
|
||||
}
|
||||
|
||||
/*
|
||||
* Utility function to load a linear buffer. lastaddrp holds state
|
||||
* between invocations (for multiple-buffer loads). segp contains
|
||||
* the starting segment on entrance, and the ending segment on exit.
|
||||
* first indicates if this is the first invocation of this function.
|
||||
*/
|
||||
static int
|
||||
bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dma_segment_t segs[],
|
||||
void *buf, bus_size_t buflen, struct thread *td, int flags,
|
||||
vm_offset_t *lastaddrp, int *segp, int first)
|
||||
{
|
||||
bus_size_t sgsize;
|
||||
bus_addr_t curaddr, lastaddr, baddr, bmask;
|
||||
vm_offset_t vaddr = (vm_offset_t)buf;
|
||||
int seg;
|
||||
|
||||
lastaddr = *lastaddrp;
|
||||
bmask = ~(dmat->boundary - 1);
|
||||
|
||||
for (seg = *segp; buflen > 0 ; ) {
|
||||
/*
|
||||
* Get the physical address for this segment.
|
||||
*/
|
||||
curaddr = vaddr;
|
||||
|
||||
/*
|
||||
* Compute the segment size, and adjust counts.
|
||||
*/
|
||||
sgsize = PAGE_SIZE - ((u_long)curaddr & PAGE_MASK);
|
||||
if (sgsize > dmat->maxsegsz)
|
||||
sgsize = dmat->maxsegsz;
|
||||
if (buflen < sgsize)
|
||||
sgsize = buflen;
|
||||
|
||||
/*
|
||||
* Make sure we don't cross any boundaries.
|
||||
*/
|
||||
if (dmat->boundary > 0) {
|
||||
baddr = (curaddr + dmat->boundary) & bmask;
|
||||
if (sgsize > (baddr - curaddr))
|
||||
sgsize = (baddr - curaddr);
|
||||
}
|
||||
|
||||
/*
|
||||
* Insert chunk into a segment, coalescing with
|
||||
* the previous segment if possible.
|
||||
*/
|
||||
if (first) {
|
||||
segs[seg].ds_addr = curaddr;
|
||||
segs[seg].ds_len = sgsize;
|
||||
first = 0;
|
||||
} else {
|
||||
if (curaddr == lastaddr &&
|
||||
(segs[seg].ds_len + sgsize) <= dmat->maxsegsz &&
|
||||
(dmat->boundary == 0 ||
|
||||
(segs[seg].ds_addr & bmask) == (curaddr & bmask)))
|
||||
segs[seg].ds_len += sgsize;
|
||||
else {
|
||||
if (++seg >= dmat->nsegments)
|
||||
break;
|
||||
segs[seg].ds_addr = curaddr;
|
||||
segs[seg].ds_len = sgsize;
|
||||
}
|
||||
}
|
||||
|
||||
lastaddr = curaddr + sgsize;
|
||||
vaddr += sgsize;
|
||||
buflen -= sgsize;
|
||||
}
|
||||
|
||||
*segp = seg;
|
||||
*lastaddrp = lastaddr;
|
||||
|
||||
/*
|
||||
* Did we fit?
|
||||
*/
|
||||
return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */
|
||||
}
|
||||
|
||||
/*
|
||||
* Map the buffer buf into bus space using the dmamap map.
|
||||
*/
|
||||
int
|
||||
bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
|
||||
bus_size_t buflen, bus_dmamap_callback_t *callback,
|
||||
void *callback_arg, int flags)
|
||||
{
|
||||
bus_dma_segment_t dm_segments[dmat->nsegments];
|
||||
vm_offset_t lastaddr;
|
||||
int error, nsegs;
|
||||
|
||||
map->buffer_begin = buf;
|
||||
map->buffer_size = buflen;
|
||||
|
||||
lastaddr = (vm_offset_t)0;
|
||||
nsegs = 0;
|
||||
error = bus_dmamap_load_buffer(dmat, dm_segments, buf, buflen,
|
||||
NULL, flags, &lastaddr, &nsegs, 1);
|
||||
|
||||
if (error == 0)
|
||||
(*callback)(callback_arg, dm_segments, nsegs + 1, 0);
|
||||
else
|
||||
(*callback)(callback_arg, NULL, 0, error);
|
||||
|
||||
return (0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Release the mapping held by map. A no-op on PowerPC.
|
||||
*/
|
||||
void
|
||||
_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
|
||||
{
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void
|
||||
_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)
|
||||
{
|
||||
#ifdef CPU_DATA_CACHE_ALIGNMENT
|
||||
uintptr_t size = map->buffer_size;
|
||||
uintptr_t begin = (uintptr_t) map->buffer_begin;
|
||||
uintptr_t end = begin + size;
|
||||
|
||||
if ((op & BUS_DMASYNC_PREWRITE) != 0 && (op & BUS_DMASYNC_PREREAD) == 0) {
|
||||
rtems_cache_flush_multiple_data_lines((void *) begin, size);
|
||||
}
|
||||
if ((op & BUS_DMASYNC_PREREAD) != 0) {
|
||||
if ((op & BUS_DMASYNC_PREWRITE) != 0 || ((begin | size) & CLMASK) != 0) {
|
||||
rtems_cache_flush_multiple_data_lines((void *) begin, size);
|
||||
}
|
||||
rtems_cache_invalidate_multiple_data_lines((void *) begin, size);
|
||||
}
|
||||
if ((op & BUS_DMASYNC_POSTREAD) != 0) {
|
||||
char first_buf [CLSZ];
|
||||
char last_buf [CLSZ];
|
||||
bool first_is_aligned = (begin & CLMASK) == 0;
|
||||
bool last_is_aligned = (end & CLMASK) == 0;
|
||||
void *first_begin = (void *) (begin & ~CLMASK);
|
||||
size_t first_size = begin & CLMASK;
|
||||
void *last_begin = (void *) end;
|
||||
size_t last_size = CLSZ - (end & CLMASK);
|
||||
|
||||
if (!first_is_aligned) {
|
||||
memcpy(first_buf, first_begin, first_size);
|
||||
}
|
||||
if (!last_is_aligned) {
|
||||
memcpy(last_buf, last_begin, last_size);
|
||||
}
|
||||
|
||||
rtems_cache_invalidate_multiple_data_lines((void *) begin, size);
|
||||
|
||||
if (!first_is_aligned) {
|
||||
memcpy(first_begin, first_buf, first_size);
|
||||
}
|
||||
if (!last_is_aligned) {
|
||||
memcpy(last_begin, last_buf, last_size);
|
||||
}
|
||||
}
|
||||
#endif /* CPU_DATA_CACHE_ALIGNMENT */
|
||||
}
|
Reference in New Issue
Block a user