Added taskqueue to resolve linking issues with the RealTek Nic.

This commit is contained in:
Jennifer Averett 2012-03-22 09:58:40 -05:00
parent aa53ae9c3c
commit da162c83ea
5 changed files with 599 additions and 2 deletions

View File

@ -374,7 +374,8 @@ C_FILES += \
rtemsbsd/src/rtems-bsd-sysctl.c \
rtemsbsd/src/rtems-bsd-sysctlbyname.c \
rtemsbsd/src/rtems-bsd-sysctlnametomib.c \
rtemsbsd/src/rtems-bsd-uma.c
rtemsbsd/src/rtems-bsd-uma.c \
rtemsbsd/src/rtems-bsd-taskqueue.c
ifeq ($(RTEMS_CPU),arm)
C_FILES += \

View File

@ -487,6 +487,7 @@ rtems_headerFiles = [
'rtems/machine/rtems-bsd-cache.h',
'rtems/machine/rtems-bsd-sysinit.h',
'rtems/machine/rtems-bsd-select.h',
'rtems/machine/rtems-bsd-taskqueue.h',
#'rtems/machine/vm.h',
'bsd.h',
]
@ -526,6 +527,7 @@ rtems_sourceFiles = [
'src/rtems-bsd-sysctlbyname.c',
'src/rtems-bsd-sysctlnametomib.c',
'src/rtems-bsd-uma.c',
'src/rtems-bsd-taskqueue.c',
]
# RTEMS files handled separately from modules
# rtems = Module('rtems')
@ -1273,7 +1275,7 @@ netDeps.addHeaderFiles(
'sys/sdt.h',
'sys/_task.h',
'sys/sbuf.h',
#'sys/smp.h',
'sys/smp.h',
'sys/syslog.h',
'sys/jail.h',
'sys/protosw.h',

183
freebsd/sys/smp.h Normal file
View File

@ -0,0 +1,183 @@
/*-
* ----------------------------------------------------------------------------
* "THE BEER-WARE LICENSE" (Revision 42):
* <phk@FreeBSD.org> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
* ----------------------------------------------------------------------------
*
* $FreeBSD$
*/
#ifndef _SYS_SMP_HH_
#define _SYS_SMP_HH_
#ifdef _KERNEL
#ifndef LOCORE
#ifdef SMP
/*
* Topology of a NUMA or HTT system.
*
* The top level topology is an array of pointers to groups. Each group
* contains a bitmask of cpus in its group or subgroups. It may also
* contain a pointer to an array of child groups.
*
* The bitmasks at non leaf groups may be used by consumers who support
* a smaller depth than the hardware provides.
*
* The topology may be omitted by systems where all CPUs are equal.
*/
struct cpu_group {
struct cpu_group *cg_parent; /* Our parent group. */
struct cpu_group *cg_child; /* Optional children groups. */
cpumask_t cg_mask; /* Mask of cpus in this group. */
int8_t cg_count; /* Count of cpus in this group. */
int8_t cg_children; /* Number of children groups. */
int8_t cg_level; /* Shared cache level. */
int8_t cg_flags; /* Traversal modifiers. */
};
/*
* Defines common resources for CPUs in the group. The highest level
* resource should be used when multiple are shared.
*/
#define CG_SHARE_NONE 0
#define CG_SHARE_L1 1
#define CG_SHARE_L2 2
#define CG_SHARE_L3 3
/*
* Behavior modifiers for load balancing and affinity.
*/
#define CG_FLAG_HTT 0x01 /* Schedule the alternate core last. */
#define CG_FLAG_SMT 0x02 /* New age htt, less crippled. */
#define CG_FLAG_THREAD (CG_FLAG_HTT | CG_FLAG_SMT) /* Any threading. */
/*
* Convenience routines for building topologies.
*/
struct cpu_group *smp_topo(void);
struct cpu_group *smp_topo_none(void);
struct cpu_group *smp_topo_1level(int l1share, int l1count, int l1flags);
struct cpu_group *smp_topo_2level(int l2share, int l2count, int l1share,
int l1count, int l1flags);
struct cpu_group *smp_topo_find(struct cpu_group *top, int cpu);
extern void (*cpustop_restartfunc)(void);
extern int smp_active;
extern int smp_cpus;
extern volatile cpumask_t started_cpus;
extern volatile cpumask_t stopped_cpus;
extern cpumask_t idle_cpus_mask;
extern cpumask_t hlt_cpus_mask;
extern cpumask_t logical_cpus_mask;
#endif /* SMP */
extern u_int mp_maxid;
extern int mp_maxcpus;
extern int mp_ncpus;
extern volatile int smp_started;
extern cpumask_t all_cpus;
/*
* Macro allowing us to determine whether a CPU is absent at any given
* time, thus permitting us to configure sparse maps of cpuid-dependent
* (per-CPU) structures.
*/
#define CPU_ABSENT(x_cpu) ((all_cpus & (1 << (x_cpu))) == 0)
/*
* Macros to iterate over non-absent CPUs. CPU_FOREACH() takes an
* integer iterator and iterates over the available set of CPUs.
* CPU_FIRST() returns the id of the first non-absent CPU. CPU_NEXT()
* returns the id of the next non-absent CPU. It will wrap back to
* CPU_FIRST() once the end of the list is reached. The iterators are
* currently implemented via inline functions.
*/
#define CPU_FOREACH(i) \
for ((i) = 0; (i) <= mp_maxid; (i)++) \
if (!CPU_ABSENT((i)))
static __inline int
cpu_first(void)
{
int i;
for (i = 0;; i++)
if (!CPU_ABSENT(i))
return (i);
}
static __inline int
cpu_next(int i)
{
for (;;) {
i++;
if (i > mp_maxid)
i = 0;
if (!CPU_ABSENT(i))
return (i);
}
}
#define CPU_FIRST() cpu_first()
#define CPU_NEXT(i) cpu_next((i))
#ifdef SMP
/*
* Machine dependent functions used to initialize MP support.
*
* The cpu_mp_probe() should check to see if MP support is present and return
* zero if it is not or non-zero if it is. If MP support is present, then
* cpu_mp_start() will be called so that MP can be enabled. This function
* should do things such as startup secondary processors. It should also
* setup mp_ncpus, all_cpus, and smp_cpus. It should also ensure that
* smp_active and smp_started are initialized at the appropriate time.
* Once cpu_mp_start() returns, machine independent MP startup code will be
* executed and a simple message will be output to the console. Finally,
* cpu_mp_announce() will be called so that machine dependent messages about
* the MP support may be output to the console if desired.
*
* The cpu_setmaxid() function is called very early during the boot process
* so that the MD code may set mp_maxid to provide an upper bound on CPU IDs
* that other subsystems may use. If a platform is not able to determine
* the exact maximum ID that early, then it may set mp_maxid to MAXCPU - 1.
*/
struct thread;
struct cpu_group *cpu_topo(void);
void cpu_mp_announce(void);
int cpu_mp_probe(void);
void cpu_mp_setmaxid(void);
void cpu_mp_start(void);
void forward_signal(struct thread *);
int restart_cpus(cpumask_t);
int stop_cpus(cpumask_t);
int stop_cpus_hard(cpumask_t);
#if defined(__amd64__)
int suspend_cpus(cpumask_t);
#endif
void smp_rendezvous_action(void);
extern struct mtx smp_ipi_mtx;
#endif /* SMP */
void smp_no_rendevous_barrier(void *);
void smp_rendezvous(void (*)(void *),
void (*)(void *),
void (*)(void *),
void *arg);
void smp_rendezvous_cpus(cpumask_t,
void (*)(void *),
void (*)(void *),
void (*)(void *),
void *arg);
#endif /* !LOCORE */
#endif /* _KERNEL */
#endif /* _SYS_SMP_HH_ */

View File

@ -0,0 +1,86 @@
/**
* @file
*
* @ingroup rtems_bsd_rtems
*
* @brief TODO.
*/
/*
* COPYRIGHT (c) 1989-2012.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.com/license/LICENSE.
*/
#ifndef RTEMS_TASKQUEUE_H
#define RTEMS_TASKQUEUE_H
#include <stdarg.h>
#ifdef __cplusplus
extern "C" {
#endif
struct taskqueue;
typedef void (*task_fn)(void *ctxt, int pending);
/* forwarded 'ctxt' that was passed to taskqueue_create() */
typedef void (*tq_enq_fn)(void *ctxt);
struct task {
struct task *ta_next;
int ta_pending;
int ta_priority;
task_fn ta_fn;
void *ta_fn_arg;
};
struct taskqueue *
taskqueue_create(const char *name, int mflags, tq_enq_fn, void *ctxt);
struct taskqueue *
taskqueue_create_fast(const char *name, int mflags, tq_enq_fn, void *ctxt);
int
taskqueue_enqueue(struct taskqueue *tq, struct task *ta);
#define taskqueue_enqueue_fast(_q,_t) taskqueue_enqueue(_q,_t)
void
taskqueue_thread_enqueue(void *ctxt);
#define PI_NET 150
/* Returns 0 on success */
int
taskqueue_start_threads(struct taskqueue **ptq, int count, int prio, const char *fmt, ...);
void
taskqueue_drain(struct taskqueue *tq, struct task *ta);
void
taskqueue_free(struct taskqueue *tq);
#define TASK_INIT(task, pri, fn, arg) \
do { \
(task)->ta_next = 0; \
(task)->ta_priority = (pri); \
(task)->ta_pending = 0; \
(task)->ta_fn = (fn); \
(task)->ta_fn_arg = (arg); \
} while (0)
extern struct taskqueue *taskqueue_fast;
/* Initialize taskqueue facility [networking must have been initialized already] */
rtems_id
rtems_taskqueue_initialize();
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,325 @@
/**
* @file
*
* @ingroup rtems_bsd_rtems
*
* @brief TODO.
*/
/*
* COPYRIGHT (c) 1989-2012.
* On-Line Applications Research Corporation (OAR).
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rtems.com/license/LICENSE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <rtems.h>
#include <rtems/error.h>
#include <freebsd/machine/rtems-bsd-taskqueue.h>
/*
#define STATIC static
*/
#undef DEBUG
#ifdef DEBUG
#include <stdio.h>
#ifndef STATIC
#define STATIC
#endif
#else
#ifndef STATIC
#define STATIC static
#endif
#endif
#define TQ_WAKE_EVENT RTEMS_EVENT_0
/* This implementation is extremely simple; we assume
* that all taskqueues (and as a matter of fact there is
* only a single one) are manipulated with the rtems
* bsdnet semaphore held. I.e.,
* taskqueue_enqueue()
* taskqueue_drain()
* etc.
* are called from an environment that holds the
* bsdnet semaphore.
* Likewise, the thread that works the taskqueue
* holds the semaphore while doing so.
*
*/
/* use single-linked list; 'drain' which would benefit from
* double-linked list is seldom used and performance doesn't
* matter much there. OTOH, the frequent case of working
* the list + enqueueing is more efficient for the single-linked
* list.
struct task {
struct task *ta_next;
int ta_pending;
int ta_priority;
task_fn ta_fn;
void *ta_fn_arg;
};
*/
struct taskqueue {
struct task anchor;
struct task *tail;
tq_enq_fn enq_fn;
void *enq_fn_arg;
rtems_id tid;
};
STATIC struct taskqueue the_taskqueue = {
{ 0, 0, 0, 0, 0 },
&the_taskqueue.anchor,
taskqueue_thread_enqueue,
&taskqueue_fast,
0
};
struct taskqueue *taskqueue_fast = &the_taskqueue;
struct taskqueue *taskqueue_swi = NULL;
struct taskqueue *
taskqueue_create(const char *name, int mflags, tq_enq_fn enq_fn, void *arg)
{
if ( enq_fn != taskqueue_thread_enqueue )
rtems_panic("rtems_taskqueue: attempt to create non-standard TQ; implementation needs to be modified\n");
return &the_taskqueue;
}
struct taskqueue *
taskqueue_create_fast(const char *name, int mflags, tq_enq_fn enq_fn, void *arg)
{
return taskqueue_create(name, mflags, enq_fn, arg);
}
/* taskqueue_enqueue must be allowed from an ISR;
* hence, all critical list manipulation must lock out
* interrupts...
*/
int
taskqueue_enqueue(struct taskqueue *tq, struct task *ta)
{
rtems_interrupt_level l;
rtems_interrupt_disable(l);
if ( 0 == ta->ta_pending ++ ) {
/* hook into list */
ta->ta_next = 0;
tq->tail->ta_next = ta;
tq->tail = ta;
}
tq->enq_fn(tq->enq_fn_arg);
rtems_interrupt_enable(l);
return 0;
}
void
taskqueue_thread_enqueue(void *ctxt)
{
int dopost;
/* pointer-to-pointer is what bsd provides; we currently
* follow the scheme even we don't directly use the argument
* passed to taskqueue_create...
*/
struct taskqueue *tq = *(struct taskqueue **)ctxt;
/* If this is the first entry on the list then the
* task needs to be notified...
*/
dopost = ( tq->anchor.ta_next == tq->tail && 1 == tq->tail->ta_pending );
if ( dopost )
rtems_event_send(tq->tid, TQ_WAKE_EVENT);
}
/* Returns 0 on success */
int
taskqueue_start_threads(struct taskqueue **ptq, int count, int prio, const char *fmt, ...)
{
if ( count != 1 )
rtems_panic("rtems_taskqueue: taskqueue_start_threads cannot currently deal with count != 1\n");
/* Do (non thread-safe) lazy init as a fallback */
if ( ! the_taskqueue.tid )
rtems_taskqueue_initialize();
return 0;
}
void
taskqueue_drain(struct taskqueue *tq, struct task *ta)
{
rtems_interrupt_level l;
struct task *p, *q;
int i;
/* find predecessor; searching the list should be
* safe; an ISR might append a new record to the tail
* while we are working but that should be OK.
*/
for ( p = &tq->anchor; (q = p->ta_next); p=q ) {
if ( q == ta ) {
rtems_interrupt_disable(l);
/* found; do work */
/* remember 'pending' count and extract */
i = ta->ta_pending;
ta->ta_pending = 0;
p->ta_next = ta->ta_next;
ta->ta_next = 0;
/* adjust tail */
if ( tq->tail == q )
tq->tail = p;
rtems_interrupt_enable(l);
for ( ; i>0; i-- ) {
ta->ta_fn(ta->ta_fn_arg, i);
}
return;
}
}
}
/* work the task queue and return
* nonzero if the list is not empty
* (which means that some callback has
* rescheduled itself)
*/
static void *
taskqueue_work(struct taskqueue *tq)
{
rtems_interrupt_level l;
struct task *p, *q;
task_fn f;
void *arg;
int i;
/* work off a temporary list in case any callback reschedules
* itself or if new tasks are queued from an ISR.
*/
rtems_interrupt_disable(l);
p = tq->anchor.ta_next;
tq->anchor.ta_next = 0;
tq->tail = &tq->anchor;
rtems_interrupt_enable(l);
while ( (q=p) ) {
rtems_interrupt_disable(l);
i = q->ta_pending;
q->ta_pending = 0;
/* extract */
p = q->ta_next;
q->ta_next = 0;
f = q->ta_fn;
arg = q->ta_fn_arg;
rtems_interrupt_enable(l);
for ( ; i>0; i-- ) {
f(arg, i);
}
}
return tq->anchor.ta_next;
}
void
taskqueue_free(struct taskqueue *tq)
{
taskqueue_work(tq);
}
static void
taskqueueDoWork(void *arg)
{
struct taskqueue *tq = arg;
rtems_event_set evs;
rtems_status_code sc;
while ( 1 ) {
sc = rtems_bsdnet_event_receive(TQ_WAKE_EVENT, RTEMS_EVENT_ANY | RTEMS_WAIT, RTEMS_NO_TIMEOUT, &evs);
if ( RTEMS_SUCCESSFUL != sc ) {
rtems_error(sc,"rtems_taskqueue: taskqueueDoWork() unable to receive wakup event\n");
rtems_panic("Can't proceed\n");
}
if ( taskqueue_work(tq) ) {
#if 0
/* chance to reschedule */
rtems_bsdnet_semaphore_release();
rtems_task_wake_after(0);
rtems_bsdnet_semaphore_obtain();
#else
/* hopefully, releasing the semaphore (as part of bsdnet_event_receive)
* and obtaining the event (which has been posted already)
* yields the CPU if necessary...
*/
#endif
}
}
}
#ifdef DEBUG
struct task_dbg {
struct task t;
char *nm;
};
struct task_dbg taskA = {
{0},
"taskA"
};
struct task_dbg taskB = {
{0},
"taskB"
};
struct task_dbg taskC = {
{0},
"taskC"
};
static void the_task_fn(void *arg, int pending)
{
struct task_dbg *td = arg;
printf("%s (pending: %i)\n", td->nm, pending);
/* Test rescheduling */
if ( pending > 3 )
taskqueue_enqueue(&the_taskqueue,&td->t);
}
void taskqueue_dump()
{
struct task *p;
printf("Anchor %p, Tail %p\n", &the_taskqueue.anchor, the_taskqueue.tail);
for ( p = the_taskqueue.anchor.ta_next; p; p=p->ta_next ) {
printf("%p: (pending %2i, next %p)\n",
p, p->ta_pending, p->ta_next);
}
}
#endif
rtems_id
rtems_taskqueue_initialize()
{
#ifdef DEBUG
TASK_INIT( &taskA.t, 0, the_task_fn, &taskA );
TASK_INIT( &taskB.t, 0, the_task_fn, &taskB );
TASK_INIT( &taskC.t, 0, the_task_fn, &taskC );
#endif
if ( ! the_taskqueue.tid )
the_taskqueue.tid = rtems_bsdnet_newproc("tskq", 10000, taskqueueDoWork, &the_taskqueue);
return the_taskqueue.tid;
}
#ifdef DEBUG
void
_cexpModuleInitialize(void *u)
{
rtems_bsdnet_initialize_network();
the_taskqueue.tid = rtems_taskqueue_initialize();
}
#endif