rtems-libbsd/rtemsbsd/sys/dev/ffec/if_ffec_mcf548x.c
2016-09-23 09:54:49 +02:00

1587 lines
39 KiB
C

/*===============================================================*\
| Project: RTEMS generic MCF548X BSP |
+-----------------------------------------------------------------+
| Partially based on the code references which are named below. |
| Adaptions, modifications, enhancements and any recent parts of |
| the code are: |
| Copyright (c) 2009 |
| Embedded Brains GmbH |
| Obere Lagerstr. 30 |
| D-82178 Puchheim |
| Germany |
| rtems@embedded-brains.de |
+-----------------------------------------------------------------+
| The license and distribution terms for this file may be |
| found in the file LICENSE in this distribution or at |
| |
| http://www.rtems.com/license/LICENSE. |
| |
+-----------------------------------------------------------------+
| this file contains the networking driver |
\*===============================================================*/
/*
* RTEMS/TCPIP driver for MCF548X FEC Ethernet
*
* Modified for Motorola MPC5200 by Thomas Doerfler, <Thomas.Doerfler@imd-systems.de>
* COPYRIGHT (c) 2003, IMD
*
* Modified for Motorola IceCube (mgt5100) by Peter Rasmussen <prasmus@ipr-engineering.de>
* COPYRIGHT (c) 2003, IPR Engineering
*
* Parts of code are also under property of Driver Information Systems and based
* on Motorola Proprietary Information.
* COPYRIGHT (c) 2002 MOTOROLA INC.
*
* Modified for Motorola MCF548X by Thomas Doerfler, <Thomas.Doerfler@imd-systems.de>
* COPYRIGHT (c) 2009, IMD
*
*/
#include <machine/rtems-bsd-kernel-space.h>
#include <bsp.h>
#ifdef LIBBSP_M68K_GENMCF548X_BSP_H
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#pragma GCC diagnostic ignored "-Wpointer-sign"
#include <stdio.h>
#include <rtems/bsd/sys/param.h>
#include <sys/types.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <net/if.h>
#include <net/ethernet.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <bsp/irq-generic.h>
#include <mcf548x/mcf548x.h>
#include <rtems/rtems_mii_ioctl.h>
#include <errno.h>
/* freescale-api-specifics... */
#include <mcf548x/MCD_dma.h>
#include <mcf548x/mcdma_glue.h>
/* FIXME */
rtems_id
rtems_bsdnet_newproc (char *name, int stacksize, void(*entry)(void *), void *arg);
#define rtems_panic panic
#define SIO_RTEMS_SHOW_STATS _IO('i', 250)
static void mcf548x_fec_watchdog(void *arg);
/*
* Number of interfaces supported by this driver
*/
#define NIFACES 2
#define FEC_WATCHDOG_TIMEOUT 5 /* check media every 5 seconds */
#define DMA_BD_RX_NUM 128 /* Number of receive buffer descriptors */
#define DMA_BD_TX_NUM 128 /* Number of transmit buffer descriptors */
#define FEC_EVENT RTEMS_EVENT_0
/*
* internal SRAM
* Layout:
* - RxBD channel 0
* - TxBD channel 0
* - RxBD channel 1
* - TxBD channel 1
* - DMA task memory
*/
extern char _SysSramBase[];
#define SRAM_RXBD_BASE(base,chan) (((MCD_bufDescFec*)(base)) \
+((chan) \
*(DMA_BD_RX_NUM+DMA_BD_TX_NUM)))
#define SRAM_TXBD_BASE(base,chan) (((MCD_bufDescFec*)(base)) \
+((chan) \
*(DMA_BD_RX_NUM+DMA_BD_TX_NUM) \
+DMA_BD_RX_NUM))
#define SRAM_DMA_BASE(base) ((void *)SRAM_RXBD_BASE(base,NIFACES+1))
#undef ETH_DEBUG
/*
* Default number of buffer descriptors set aside for this driver.
* The number of transmit buffer descriptors has to be quite large
* since a single frame often uses four or more buffer descriptors.
*/
#define RX_BUF_COUNT DMA_BD_RX_NUM
#define TX_BUF_COUNT DMA_BD_TX_NUM
#define TX_BD_PER_BUF 1
#define INET_ADDR_MAX_BUF_SIZE (sizeof "255.255.255.255")
#define MCF548X_FEC0_IRQ_VECTOR (39+64)
#define MCF548X_FEC1_IRQ_VECTOR (38+64)
#define MCF548X_FEC_IRQ_VECTOR(chan) (MCF548X_FEC0_IRQ_VECTOR \
+(chan)*(MCF548X_FEC1_IRQ_VECTOR \
-MCF548X_FEC0_IRQ_VECTOR))
#define MCF548X_FEC_VECTOR2CHAN(vector) (((int)(vector)-MCF548X_FEC0_IRQ_VECTOR) \
/(MCF548X_FEC1_IRQ_VECTOR \
-MCF548X_FEC0_IRQ_VECTOR))
#define MCDMA_FEC_RX_CHAN(chan) (0 + NIFACES*(chan))
#define MCDMA_FEC_TX_CHAN(chan) (1 + NIFACES*(chan))
#define MCF548X_FEC0_RX_INITIATOR (16)
#define MCF548X_FEC1_RX_INITIATOR (30)
#define MCF548X_FEC_RX_INITIATOR(chan) (MCF548X_FEC0_RX_INITIATOR \
+(chan)*(MCF548X_FEC1_RX_INITIATOR \
-MCF548X_FEC0_RX_INITIATOR))
#define MCF548X_FEC0_TX_INITIATOR (17)
#define MCF548X_FEC1_TX_INITIATOR (31)
#define MCF548X_FEC_TX_INITIATOR(chan) (MCF548X_FEC0_TX_INITIATOR \
+(chan)*(MCF548X_FEC1_TX_INITIATOR \
-MCF548X_FEC0_TX_INITIATOR))
/* BD and parameters are stored in SRAM(refer to sdma.h) */
#define MCF548X_FEC_BD_BASE ETH_BD_BASE
/* RBD bits definitions */
#define MCF548X_FEC_RBD_EMPTY 0x8000 /* Buffer is empty */
#define MCF548X_FEC_RBD_WRAP 0x2000 /* Last BD in ring */
#define MCF548X_FEC_RBD_INT 0x1000 /* Interrupt */
#define MCF548X_FEC_RBD_LAST 0x0800 /* Buffer is last in frame(useless) */
#define MCF548X_FEC_RBD_MISS 0x0100 /* Miss bit for prom mode */
#define MCF548X_FEC_RBD_BC 0x0080 /* The received frame is broadcast frame */
#define MCF548X_FEC_RBD_MC 0x0040 /* The received frame is multicast frame */
#define MCF548X_FEC_RBD_LG 0x0020 /* Frame length violation */
#define MCF548X_FEC_RBD_NO 0x0010 /* Nonoctet align frame */
#define MCF548X_FEC_RBD_SH 0x0008 /* Short frame, FEC does not support SH and this bit is always cleared */
#define MCF548X_FEC_RBD_CR 0x0004 /* CRC error */
#define MCF548X_FEC_RBD_OV 0x0002 /* Receive FIFO overrun */
#define MCF548X_FEC_RBD_TR 0x0001 /* The receive frame is truncated */
#define MCF548X_FEC_RBD_ERR (MCF548X_FEC_RBD_LG | \
MCF548X_FEC_RBD_NO | \
MCF548X_FEC_RBD_CR | \
MCF548X_FEC_RBD_OV | \
MCF548X_FEC_RBD_TR)
/* TBD bits definitions */
#define MCF548X_FEC_TBD_READY 0x8000 /* Buffer is ready */
#define MCF548X_FEC_TBD_WRAP 0x2000 /* Last BD in ring */
#define MCF548X_FEC_TBD_INT 0x1000 /* Interrupt */
#define MCF548X_FEC_TBD_LAST 0x0800 /* Buffer is last in frame */
#define MCF548X_FEC_TBD_TC 0x0400 /* Transmit the CRC */
#define MCF548X_FEC_TBD_ABC 0x0200 /* Append bad CRC */
#define FEC_INTR_MASK_USED \
(MCF548X_FEC_EIMR_LC | MCF548X_FEC_EIMR_RL | \
MCF548X_FEC_EIMR_XFUN | MCF548X_FEC_EIMR_XFERR | MCF548X_FEC_EIMR_RFERR)
typedef enum {
FEC_STATE_RESTART_0,
FEC_STATE_RESTART_1,
FEC_STATE_NORMAL,
} fec_state;
/*
* Device data
*/
struct mcf548x_enet_struct {
device_t dev;
struct ifnet *ifp;
struct mtx mtx;
struct mbuf **rxMbuf;
struct mbuf **txMbuf;
int chan;
fec_state state;
int acceptBroadcast;
int rxBdCount;
int txBdCount;
MCD_bufDescFec *rxBd;
MCD_bufDescFec *txBd;
int rxDmaChan; /* dma task */
int txDmaChan; /* dma task */
struct callout watchdogCallout;
rtems_id rxDaemonTid;
rtems_id txDaemonTid;
/*
* MDIO/Phy info
*/
struct rtems_mdio_info mdio_info;
int phy_default;
int phy_chan; /* which fec channel services this phy access? */
int media_state; /* (last detected) state of media */
unsigned long rxInterrupts;
unsigned long rxNotLast;
unsigned long rxGiant;
unsigned long rxNonOctet;
unsigned long rxBadCRC;
unsigned long rxFIFOError;
unsigned long rxCollision;
unsigned long txInterrupts;
unsigned long txDeferred;
unsigned long txLateCollision;
unsigned long txUnderrun;
unsigned long txFIFOError;
unsigned long txMisaligned;
unsigned long rxNotFirst;
unsigned long txRetryLimit;
};
#define FEC_LOCK(sc) mtx_lock(&(sc)->mtx)
#define FEC_UNLOCK(sc) mtx_unlock(&(sc)->mtx)
static struct mcf548x_enet_struct *fec_vector_to_sc[NIFACES];
static void mcf548x_fec_restart(struct mcf548x_enet_struct *sc, rtems_id otherDaemon);
static void fec_send_event(rtems_id task)
{
rtems_event_send(task, FEC_EVENT);
}
static void fec_wait_for_event(struct mcf548x_enet_struct *sc)
{
rtems_event_set out;
FEC_UNLOCK(sc);
rtems_event_receive(
FEC_EVENT,
RTEMS_EVENT_ANY | RTEMS_WAIT,
RTEMS_NO_TIMEOUT,
&out
);
FEC_LOCK(sc);
}
static void mcf548x_fec_request_restart(struct mcf548x_enet_struct *sc)
{
sc->state = FEC_STATE_RESTART_0;
fec_send_event(sc->txDaemonTid);
fec_send_event(sc->rxDaemonTid);
}
/*
* Function: MCF548X_eth_addr_filter_set
*
* Description: Set individual address filter for unicast address and
* set physical address registers.
*
* Returns: void
*
* Notes:
*
*/
static void mcf548x_eth_addr_filter_set(struct mcf548x_enet_struct *sc) {
unsigned char *mac;
unsigned char currByte; /* byte for which to compute the CRC */
int byte; /* loop - counter */
int bit; /* loop - counter */
unsigned long crc = 0xffffffff; /* initial value */
int chan = sc->chan;
/*
* Get the mac address of ethernet controller
*/
mac = IF_LLADDR(sc->ifp);
/*
* The algorithm used is the following:
* we loop on each of the six bytes of the provided address,
* and we compute the CRC by left-shifting the previous
* value by one position, so that each bit in the current
* byte of the address may contribute the calculation. If
* the latter and the MSB in the CRC are different, then
* the CRC value so computed is also ex-ored with the
* "polynomium generator". The current byte of the address
* is also shifted right by one bit at each iteration.
* This is because the CRC generatore in hardware is implemented
* as a shift-register with as many ex-ores as the radixes
* in the polynomium. This suggests that we represent the
* polynomiumm itsc as a 32-bit constant.
*/
for(byte = 0; byte < 6; byte++)
{
currByte = mac[byte];
for(bit = 0; bit < 8; bit++)
{
if((currByte & 0x01) ^ (crc & 0x01))
{
crc >>= 1;
crc = crc ^ 0xedb88320;
}
else
{
crc >>= 1;
}
currByte >>= 1;
}
}
crc = crc >> 26;
/*
* Set individual hash table register
*/
if(crc >= 32)
{
MCF548X_FEC_IAUR(chan) = (1 << (crc - 32));
MCF548X_FEC_IALR(chan) = 0;
}
else
{
MCF548X_FEC_IAUR(chan) = 0;
MCF548X_FEC_IALR(chan) = (1 << crc);
}
/*
* Set physical address
*/
MCF548X_FEC_PALR(chan) = ((mac[0] << 24) +
(mac[1] << 16) +
(mac[2] << 8) +
mac[3]);
MCF548X_FEC_PAUR(chan) = ((mac[4] << 24)
+ (mac[5] << 16)) + 0x8808;
}
/*
* Function: mcf548x_eth_mii_read
*
* Description: Read a media independent interface (MII) register on an
* 18-wire ethernet tranceiver (PHY). Please see your PHY
* documentation for the register map.
*
* Returns: 0 if ok
*
* Notes:
*
*/
int mcf548x_eth_mii_read(
int phyAddr, /* PHY number to access or -1 */
void *uarg, /* unit argument */
unsigned regAddr, /* register address */
uint32_t *retVal) /* ptr to read buffer */
{
struct mcf548x_enet_struct *sc = uarg;
int timeout = 0xffff;
int chan = sc->phy_chan;
/*
* reading from any PHY's register is done by properly
* programming the FEC's MII data register.
*/
MCF548X_FEC_MMFR(chan) = (MCF548X_FEC_MMFR_ST_01 |
MCF548X_FEC_MMFR_OP_READ |
MCF548X_FEC_MMFR_TA_10 |
MCF548X_FEC_MMFR_PA(phyAddr) |
MCF548X_FEC_MMFR_RA(regAddr));
/*
* wait for the related interrupt
*/
while ((timeout--) && (!(MCF548X_FEC_EIR(chan) & MCF548X_FEC_EIR_MII)));
if(timeout == 0) {
#ifdef ETH_DEBUG
iprintf ("Read MDIO failed..." "\r\n");
#endif
return 1;
}
/*
* clear mii interrupt bit
*/
MCF548X_FEC_EIR(chan) = MCF548X_FEC_EIR_MII;
/*
* it's now safe to read the PHY's register
*/
*retVal = (unsigned short) MCF548X_FEC_MMFR(chan);
return 0;
}
/*
* Function: mcf548x_eth_mii_write
*
* Description: Write a media independent interface (MII) register on an
* 18-wire ethernet tranceiver (PHY). Please see your PHY
* documentation for the register map.
*
* Returns: Success (boolean)
*
* Notes:
*
*/
static int mcf548x_eth_mii_write(
int phyAddr, /* PHY number to access or -1 */
void *uarg, /* unit argument */
unsigned regAddr, /* register address */
uint32_t data) /* write data */
{
struct mcf548x_enet_struct *sc = uarg;
int chan = sc->phy_chan;
int timeout = 0xffff;
MCF548X_FEC_MMFR(chan) = (MCF548X_FEC_MMFR_ST_01 |
MCF548X_FEC_MMFR_OP_WRITE |
MCF548X_FEC_MMFR_TA_10 |
MCF548X_FEC_MMFR_PA(phyAddr) |
MCF548X_FEC_MMFR_RA(regAddr) |
MCF548X_FEC_MMFR_DATA(data));
/*
* wait for the MII interrupt
*/
while ((timeout--) && (!(MCF548X_FEC_EIR(chan) & MCF548X_FEC_EIR_MII)));
if(timeout == 0)
{
#ifdef ETH_DEBUG
iprintf ("Write MDIO failed..." "\r\n");
#endif
return 1;
}
/*
* clear MII interrupt bit
*/
MCF548X_FEC_EIR(chan) = MCF548X_FEC_EIR_MII;
return 0;
}
/*
* Function: mcf548x_fec_reset
*
* Description: Reset a running ethernet driver including the hardware
* FIFOs and the FEC.
*
* Returns: Success (boolean)
*
* Notes:
*
*/
static void mcf548x_fec_reset(struct mcf548x_enet_struct *sc) {
volatile int delay;
int chan = sc->chan;
/*
* Clear FIFO status registers
*/
MCF548X_FEC_FECRFSR(chan) = ~0;
MCF548X_FEC_FECTFSR(chan) = ~0;
/*
* reset the FIFOs
*/
MCF548X_FEC_FRST(chan) = 0x03000000;
for (delay = 0;delay < 16*4;delay++) {};
MCF548X_FEC_FRST(chan) = 0x01000000;
/*
* Issue a reset command to the FEC chip
*/
MCF548X_FEC_ECR(chan) |= MCF548X_FEC_ECR_RESET;
/*
* wait at least 16 clock cycles
*/
for (delay = 0;delay < 16*4;delay++) {};
/* Clear and enable MIB counters */
memset(
__DEVOLATILE(void *, &MCF548X_FEC_RMON_T_DROP(chan)),
0,
0xe4
);
MCF548X_FEC_MIBC(chan) &= ~MCF548X_FEC_MIBC_MIB_DISABLE;
}
/*
* Function: mcf548x_fec_off
*
* Description: Stop the FEC and disable the ethernet SmartComm tasks.
* This function "turns off" the driver.
*
* Returns: void
*
* Notes:
*
*/
void mcf548x_fec_off(struct mcf548x_enet_struct *sc)
{
int counter = 0xffff;
int chan = sc->chan;
#if defined(ETH_DEBUG)
uint32_t phyStatus;
int i;
for(i = 0; i < 9; i++)
{
mcf548x_eth_mii_read(sc->phy_default, sc, i, &phyStatus);
iprintf ("Mii reg %d: 0x%04lx" "\r\n", i, phyStatus);
}
for(i = 16; i < 21; i++)
{
mcf548x_eth_mii_read(sc->phy_default, sc, i, &phyStatus);
iprintf ("Mii reg %d: 0x%04lx" "\r\n", i, phyStatus);
}
for(i = 0; i < 32; i++)
{
mcf548x_eth_mii_read(i, sc, 0, &phyStatus);
iprintf ("Mii Phy=%d, reg 0: 0x%04lx" "\r\n", i, phyStatus);
}
#endif /* ETH_DEBUG */
/*
* block FEC chip interrupts
*/
MCF548X_FEC_EIMR(chan) = 0;
/*
* issue graceful stop command to the FEC transmitter if necessary
*/
MCF548X_FEC_TCR(chan) |= MCF548X_FEC_TCR_GTS;
/*
* wait for graceful stop to register
* FIXME: add rtems_task_wake_after here, if it takes to long
*/
while((counter--) && (!( MCF548X_FEC_EIR(chan) & MCF548X_FEC_EIR_GRA)));
/*
* Disable the SmartDMA transmit and receive tasks.
*/
MCD_killDma( sc->rxDmaChan );
MCD_killDma( sc->txDmaChan );
/*
* Disable transmit / receive interrupts
*/
mcdma_glue_irq_disable(sc->txDmaChan);
mcdma_glue_irq_disable(sc->rxDmaChan);
/*
* Disable the Ethernet Controller
*/
MCF548X_FEC_ECR(chan) &= ~(MCF548X_FEC_ECR_ETHER_EN);
}
/*
* MCF548X FEC interrupt handler
*/
void mcf548x_fec_irq_handler(rtems_vector_number vector)
{
struct mcf548x_enet_struct *sc;
volatile uint32_t ievent;
int chan;
sc = fec_vector_to_sc[MCF548X_FEC_VECTOR2CHAN(vector)];
chan = sc->chan;
ievent = MCF548X_FEC_EIR(chan);
MCF548X_FEC_EIR(chan) = ievent;
/*
* check errors, update statistics
*/
if (ievent & MCF548X_FEC_EIR_LC) {
sc->txLateCollision++;
}
if (ievent & MCF548X_FEC_EIR_RL) {
sc->txRetryLimit++;
}
if (ievent & MCF548X_FEC_EIR_XFUN) {
sc->txUnderrun++;
}
if (ievent & MCF548X_FEC_EIR_XFERR) {
sc->txFIFOError++;
}
if (ievent & MCF548X_FEC_EIR_RFERR) {
sc->rxFIFOError++;
}
/*
* fatal error ocurred?
*/
if (ievent & (MCF548X_FEC_EIR_RFERR | MCF548X_FEC_EIR_XFERR)) {
MCF548X_FEC_EIMR(chan) &=~(MCF548X_FEC_EIMR_RFERR | MCF548X_FEC_EIMR_XFERR);
mcf548x_fec_request_restart(sc);
}
}
/*
* MCF548X DMA ethernet interrupt handler
*/
void mcf548x_mcdma_rx_irq_handler(void * param)
{
struct mcf548x_enet_struct *sc = (struct mcf548x_enet_struct *)param;
/* Frame received? */
if(MCDMA_GET_PENDING(sc->rxDmaChan)) {
MCDMA_CLR_PENDING(sc->rxDmaChan);
mcdma_glue_irq_disable(sc->rxDmaChan);/*Disable receive ints*/
sc->rxInterrupts++; /* Rx int has occurred */
fec_send_event(sc->rxDaemonTid);
}
}
/*
* MCF548X DMA ethernet interrupt handler
*/
void mcf548x_mcdma_tx_irq_handler(void * param)
{
struct mcf548x_enet_struct *sc = (struct mcf548x_enet_struct *)param;
/* Buffer transmitted or transmitter error? */
if(MCDMA_GET_PENDING(sc->txDmaChan)) {
MCDMA_CLR_PENDING(sc->txDmaChan);
mcdma_glue_irq_disable(sc->txDmaChan);/*Disable tx ints*/
sc->txInterrupts++; /* Tx int has occurred */
fec_send_event(sc->txDaemonTid);
}
}
/*
* Function: mcf548x_fec_initialize_hardware
*
* Description: Configure the MCF548X FEC registers and enable the
* SmartComm tasks. This function "turns on" the driver.
*
* Returns: void
*
* Notes:
*
*/
static void mcf548x_fec_initialize_hardware(struct mcf548x_enet_struct *sc)
{
int chan = sc->chan;
/*
* Reset mcf548x FEC
*/
mcf548x_fec_reset(sc);
/*
* Clear FEC-Lite interrupt event register (IEVENT)
*/
MCF548X_FEC_EIR(chan) = MCF548X_FEC_EIR_CLEAR_ALL;
/*
* Set interrupt mask register
*/
MCF548X_FEC_EIMR(chan) = FEC_INTR_MASK_USED;
/*
* Set FEC-Lite receive control register (R_CNTRL)
* frame length=1518, MII mode for 18-wire-transceiver
*/
MCF548X_FEC_RCR(chan) = (MCF548X_FEC_RCR_MAX_FL(ETHER_MAX_LEN)
| MCF548X_FEC_RCR_FCE
| MCF548X_FEC_RCR_MII_MODE);
/*
* Set FEC-Lite transmit control register (X_CNTRL)
* full-duplex, heartbeat disabled
*/
MCF548X_FEC_TCR(chan) = MCF548X_FEC_TCR_FDEN;
/*
* Set MII_SPEED = (1/(mii_speed * 2)) * System Clock(33Mhz)
* and do not drop the Preamble.
*/
MCF548X_FEC_MSCR(chan) = MCF548X_FEC_MSCR_MII_SPEED(7); /* ipb_clk = 33 MHz */
/*
* Set Opcode/Pause Duration Register
*/
MCF548X_FEC_PAUR(chan) = 0x00010020;
/*
* Set Rx FIFO alarm and granularity value
*/
MCF548X_FEC_FECRFCR(chan) = (MCF548X_FEC_FECRFCR_FRM
| MCF548X_FEC_FECRFCR_GR(0x7));
MCF548X_FEC_FECRFAR(chan) = MCF548X_FEC_FECRFAR_ALARM(256);
/*
* Set Tx FIFO granularity value
*/
MCF548X_FEC_FECTFCR(chan) = (MCF548X_FEC_FECTFCR_FRM
| MCF548X_FEC_FECTFCR_GR(7));
/*
* Set transmit fifo watermark register (X_WMRK), default = 64
*/
MCF548X_FEC_FECTFAR(chan) = MCF548X_FEC_FECTFAR_ALARM(512);
MCF548X_FEC_FECTFWR(chan) = MCF548X_FEC_FECTFWR_X_WMRK_256;
/*
* Set individual address filter for unicast address
* and set physical address registers.
*/
mcf548x_eth_addr_filter_set(sc);
/*
* Set multicast address filter
*/
MCF548X_FEC_GAUR(chan) = 0xffffffff;
MCF548X_FEC_GALR(chan) = 0xffffffff;
/*
* enable CRC in finite state machine register
*/
MCF548X_FEC_CTCWR(chan) = MCF548X_FEC_CTCWR_TFCW | MCF548X_FEC_CTCWR_CRC;
}
/*
* Send packet (caller provides header).
*/
static void mcf548x_fec_tx_start(struct ifnet *ifp)
{
struct mcf548x_enet_struct *sc = ifp->if_softc;
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
fec_send_event(sc->txDaemonTid);
}
static void fec_start_dma_and_controller(struct mcf548x_enet_struct *sc)
{
int chan = sc->chan;
int mcdma_rc;
/*
* Enable the SmartDMA receive task.
*/
mcdma_rc = MCD_startDma
(sc->rxDmaChan, /* the channel on which to run the DMA */
(void *)sc->rxBd, /* the address to move data from, or buffer-descriptor addr */
0, /* the amount to increment the source address per transfer */
(void *)&MCF548X_FEC_FECRFDR(chan), /* the address to move data to */
0, /* the amount to increment the destination address per transfer */
ETHER_MAX_LEN, /* the number of bytes to transfer independent of the transfer size */
0, /* the number bytes in of each data movement (1, 2, or 4) */
MCF548X_FEC_RX_INITIATOR(chan), /* what device initiates the DMA */
2, /* priority of the DMA */
0 /* flags describing the DMA */
| MCD_FECRX_DMA
| MCD_INTERRUPT
| MCD_TT_FLAGS_CW
| MCD_TT_FLAGS_RL
| MCD_TT_FLAGS_SP
,
0 /* a description of byte swapping, bit swapping, and CRC actions */
| MCD_NO_CSUM
| MCD_NO_BYTE_SWAP
);
if (mcdma_rc != MCD_OK) {
rtems_panic("FEC: cannot start rx DMA");
}
mcdma_rc = MCD_startDma
(sc->txDmaChan, /* the channel on which to run the DMA */
(void *)sc->txBd, /* the address to move data from, or buffer-descriptor addr */
0, /* the amount to increment the source address per transfer */
(void *)&MCF548X_FEC_FECTFDR(chan), /* the address to move data to */
0, /* the amount to increment the destination address per transfer */
ETHER_MAX_LEN, /* the number of bytes to transfer independent of the transfer size */
0, /* the number bytes in of each data movement (1, 2, or 4) */
MCF548X_FEC_TX_INITIATOR(chan), /* what device initiates the DMA */
1, /* priority of the DMA */
0 /* flags describing the DMA */
| MCD_FECTX_DMA
| MCD_INTERRUPT
| MCD_TT_FLAGS_CW
| MCD_TT_FLAGS_RL
| MCD_TT_FLAGS_SP
,
0 /* a description of byte swapping, bit swapping, and CRC actions */
| MCD_NO_CSUM
| MCD_NO_BYTE_SWAP
);
if (mcdma_rc != MCD_OK) {
rtems_panic("FEC: cannot start tx DMA");
}
/*
* Enable FEC-Lite controller
*/
MCF548X_FEC_ECR(chan) |= MCF548X_FEC_ECR_ETHER_EN;
}
static void mcf548x_fec_restart(struct mcf548x_enet_struct *sc, rtems_id otherDaemon)
{
if (sc->state == FEC_STATE_RESTART_1) {
mcf548x_fec_initialize_hardware(sc);
fec_start_dma_and_controller(sc);
sc->state = FEC_STATE_NORMAL;
} else {
sc->state = FEC_STATE_RESTART_1;
}
fec_send_event(otherDaemon);
while (sc->state != FEC_STATE_NORMAL) {
fec_wait_for_event(sc);
}
}
static void fec_reset_bd_and_discard_tx_frames(
int bdCount,
MCD_bufDescFec *bdRing,
struct mbuf **mbufs
)
{
int bdIndex = 0;
for (bdIndex = 0; bdIndex < bdCount; ++bdIndex) {
bool bdIsLast = bdIndex == bdCount - 1;
struct mbuf *m = mbufs[bdIndex];
bdRing[bdIndex].statCtrl = bdIsLast ? MCF548X_FEC_TBD_WRAP : 0;
if (m != NULL) {
mbufs[bdIndex] = NULL;
m_free(m);
}
}
}
static void fec_reset_tx_dma(
int dmaChan,
int bdCount,
MCD_bufDescFec *bdRing,
struct mbuf **mbufs,
struct mbuf *m
)
{
if (m != NULL) {
m_freem(m);
}
MCD_killDma(dmaChan);
fec_reset_bd_and_discard_tx_frames(bdCount, bdRing, mbufs);
}
static struct mbuf *fec_next_fragment(
struct ifnet *ifp,
struct mbuf *m,
bool *isFirst
)
{
struct mbuf *n = NULL;
*isFirst = false;
while (true) {
if (m == NULL) {
IF_DEQUEUE(&ifp->if_snd, m);
if (m != NULL) {
*isFirst = true;
} else {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
return NULL;
}
}
if (m->m_len > 0) {
break;
} else {
m = m_free(m);
}
}
n = m->m_next;
while (n != NULL && n->m_len <= 0) {
n = m_free(n);
}
m->m_next = n;
return m;
}
static bool fec_transmit(
struct ifnet *ifp,
int dmaChan,
int bdCount,
MCD_bufDescFec *bdRing,
struct mbuf **mbufs,
int *bdIndexPtr,
struct mbuf **mPtr,
MCD_bufDescFec **firstPtr
)
{
bool bdShortage = false;
int bdIndex = *bdIndexPtr;
struct mbuf *m = *mPtr;
MCD_bufDescFec *first = *firstPtr;
while (true) {
MCD_bufDescFec *bd = &bdRing[bdIndex];
MCDMA_CLR_PENDING(dmaChan);
if ((bd->statCtrl & MCF548X_FEC_TBD_READY) == 0) {
struct mbuf *done = mbufs[bdIndex];
bool isFirst = false;
if (done != NULL) {
m_free(done);
mbufs[bdIndex] = NULL;
}
m = fec_next_fragment(ifp, m, &isFirst);
if (m != NULL) {
bool bdIsLast = bdIndex == bdCount - 1;
u16 status = bdIsLast ? MCF548X_FEC_TBD_WRAP : 0;
bd->length = (u16) m->m_len;
bd->dataPointer = mtod(m, u32);
mbufs[bdIndex] = m;
rtems_cache_flush_multiple_data_lines(mtod(m, void *), m->m_len);
if (isFirst) {
first = bd;
} else {
status |= MCF548X_FEC_TBD_READY;
}
if (m->m_next != NULL) {
bd->statCtrl = status;
} else {
bd->statCtrl = status | MCF548X_FEC_TBD_INT | MCF548X_FEC_TBD_LAST;
first->statCtrl |= MCF548X_FEC_TBD_READY;
MCD_continDma(dmaChan);
}
m = m->m_next;
} else {
break;
}
} else {
bdShortage = true;
break;
}
if (bdIndex < bdCount - 1) {
++bdIndex;
} else {
bdIndex = 0;
}
}
*bdIndexPtr = bdIndex;
*mPtr = m;
*firstPtr = first;
return bdShortage;
}
static MCD_bufDescFec *fec_init_tx_dma(
MCD_bufDescFec *bdRing,
int bdCount
)
{
int bdIndex;
for (bdIndex = 0; bdIndex < bdCount; ++bdIndex) {
bool bdIsLast = bdIndex == bdCount - 1;
bdRing[bdIndex].dataPointer = 0;
bdRing[bdIndex].length = 0;
bdRing[bdIndex].statCtrl = bdIsLast ? MCF548X_FEC_RBD_WRAP : 0;
}
return bdRing;
}
static void mcf548x_fec_txDaemon(void *arg)
{
struct mcf548x_enet_struct *sc = arg;
struct ifnet *ifp = sc->ifp;
int dmaChan = sc->txDmaChan;
int bdIndex = 0;
int bdCount = sc->txBdCount;
struct mbuf **mbufs = &sc->txMbuf[0];
struct mbuf *m = NULL;
MCD_bufDescFec *bdRing = fec_init_tx_dma(sc->txBd, bdCount);
MCD_bufDescFec *first = NULL;
bool bdShortage = false;
memset(mbufs, 0, bdCount * sizeof(*mbufs));
FEC_LOCK(sc);
while (true) {
if (bdShortage) {
mcdma_glue_irq_enable(dmaChan);
}
fec_wait_for_event(sc);
if (sc->state != FEC_STATE_NORMAL) {
fec_reset_tx_dma(dmaChan, bdCount, bdRing, mbufs, m);
mcf548x_fec_restart(sc, sc->rxDaemonTid);
bdIndex = 0;
m = NULL;
first = NULL;
}
bdShortage = fec_transmit(
ifp,
dmaChan,
bdCount,
bdRing,
mbufs,
&bdIndex,
&m,
&first
);
}
}
static struct mbuf *fec_add_mbuf(
int how,
struct ifnet *ifp,
MCD_bufDescFec *bd,
bool bdIsLast
)
{
struct mbuf *m;
MGETHDR(m, how, MT_DATA);
if (m != NULL) {
MCLGET(m, how);
if ((m->m_flags & M_EXT) != 0) {
m->m_pkthdr.rcvif = ifp;
rtems_cache_invalidate_multiple_data_lines(mtod(m, void *), ETHER_MAX_LEN);
bd->dataPointer = mtod(m, u32);
bd->length = ETHER_MAX_LEN;
bd->statCtrl = MCF548X_FEC_RBD_EMPTY
| MCF548X_FEC_RBD_INT
| (bdIsLast ? MCF548X_FEC_RBD_WRAP : 0);
} else {
m_free(m);
}
}
return m;
}
static MCD_bufDescFec *fec_init_rx_dma(
MCD_bufDescFec *bdRing,
struct ifnet *ifp,
int bdCount,
struct mbuf **mbufs
)
{
int bdIndex;
for (bdIndex = 0; bdIndex < bdCount; ++bdIndex) {
bool bdIsLast = bdIndex == bdCount - 1;
mbufs[bdIndex] = fec_add_mbuf(M_WAIT, ifp, &bdRing[bdIndex], bdIsLast);
}
return bdRing;
}
static void fec_reset_rx_dma(
int dmaChan,
int bdCount,
MCD_bufDescFec *bdRing
)
{
int bdIndex;
MCD_killDma(dmaChan);
for (bdIndex = 0; bdIndex < bdCount - 1; ++bdIndex) {
bdRing[bdIndex].length = ETHER_MAX_LEN;
bdRing[bdIndex].statCtrl = MCF548X_FEC_RBD_EMPTY | MCF548X_FEC_RBD_INT;
}
bdRing[bdIndex].length = ETHER_MAX_LEN;
bdRing[bdIndex].statCtrl = MCF548X_FEC_RBD_EMPTY | MCF548X_FEC_RBD_INT | MCF548X_FEC_RBD_WRAP;
}
static int fec_ether_input(
struct mcf548x_enet_struct *sc,
struct ifnet *ifp,
int dmaChan,
int bdIndex,
int bdCount,
MCD_bufDescFec *bdRing,
struct mbuf **mbufs
)
{
while (true) {
bool bdIsLast = bdIndex == bdCount - 1;
MCD_bufDescFec *bd = &bdRing[bdIndex];
struct mbuf *m = mbufs[bdIndex];
struct mbuf *n;
u16 status;
MCDMA_CLR_PENDING(dmaChan);
status = bd->statCtrl;
if ((status & MCF548X_FEC_RBD_EMPTY) != 0) {
break;
}
n = fec_add_mbuf(0, ifp, bd, bdIsLast);
if (n != NULL) {
int len = bd->length - ETHER_CRC_LEN;
m->m_len = len;
m->m_pkthdr.len = len;
FEC_UNLOCK(sc);
sc->ifp->if_input(sc->ifp, m);
FEC_LOCK(sc);
} else {
n = m;
}
mbufs[bdIndex] = n;
if (bdIndex < bdCount - 1) {
++bdIndex;
} else {
bdIndex = 0;
}
}
return bdIndex;
}
static void mcf548x_fec_rxDaemon(void *arg)
{
struct mcf548x_enet_struct *sc = arg;
struct ifnet *ifp = sc->ifp;
int dmaChan = sc->rxDmaChan;
int bdIndex = 0;
int bdCount = sc->rxBdCount;
struct mbuf **mbufs = &sc->rxMbuf[0];
MCD_bufDescFec *bdRing = fec_init_rx_dma(sc->rxBd, ifp, bdCount, mbufs);
FEC_LOCK(sc);
while (true) {
mcdma_glue_irq_enable(dmaChan);
fec_wait_for_event(sc);
bdIndex = fec_ether_input(sc, ifp, dmaChan, bdIndex, bdCount, bdRing, mbufs);
if (sc->state != FEC_STATE_NORMAL) {
fec_reset_rx_dma(dmaChan, bdCount, bdRing);
mcf548x_fec_restart(sc, sc->txDaemonTid);
bdIndex = 0;
}
}
}
/*
* Initialize and start the device
*/
static void mcf548x_fec_init(void *arg)
{
struct mcf548x_enet_struct *sc = (struct mcf548x_enet_struct *)arg;
struct ifnet *ifp = sc->ifp;
int chan = sc->chan;
rtems_isr_entry old_handler;
char *txTaskName = "FTx0";
char *rxTaskName = "FRx0";
if(sc->txDaemonTid == 0)
{
/*
* Allocate a set of BDs
*/
sc->rxBd = SRAM_RXBD_BASE(_SysSramBase,chan);
sc->txBd = SRAM_TXBD_BASE(_SysSramBase,chan);
if(!sc->rxBd || !sc->txBd)
rtems_panic ("No memory for BDs");
/*
* clear the BDs
*/
memset((void *)sc->rxBd,0,sc->rxBdCount * sizeof *(sc->rxBd));
memset((void *)sc->txBd,0,sc->txBdCount * sizeof *(sc->txBd));
/*
* Allocate a set of mbuf pointers
*/
sc->rxMbuf =
malloc(sc->rxBdCount * sizeof *sc->rxMbuf, M_TEMP, M_NOWAIT);
sc->txMbuf =
malloc(sc->txBdCount * sizeof *sc->txMbuf, M_TEMP, M_NOWAIT);
if(!sc->rxMbuf || !sc->txMbuf)
rtems_panic ("No memory for mbuf pointers");
sc->txDmaChan = MCDMA_FEC_TX_CHAN(chan);
sc->rxDmaChan = MCDMA_FEC_RX_CHAN(chan);
mcdma_glue_init(SRAM_DMA_BASE(_SysSramBase));
/*
* Set up interrupts
*/
mcdma_glue_irq_install(sc->rxDmaChan,
mcf548x_mcdma_rx_irq_handler,
sc);
mcdma_glue_irq_install(sc->txDmaChan,
mcf548x_mcdma_tx_irq_handler,
sc);
if(rtems_interrupt_catch(mcf548x_fec_irq_handler,
MCF548X_FEC_IRQ_VECTOR(chan),
&old_handler)) {
rtems_panic ("Can't attach MFC54xx FEX interrupt handler\n");
}
bsp_interrupt_vector_enable(MCF548X_IRQ_FEC(chan));
MCF548X_FEC_EIMR(chan) = FEC_INTR_MASK_USED;
/*
* Start driver tasks
*/
txTaskName[3] = '0'+chan;
rxTaskName[3] = '0'+chan;
sc->txDaemonTid = rtems_bsdnet_newproc(txTaskName, 4096,
mcf548x_fec_txDaemon, sc);
sc->rxDaemonTid = rtems_bsdnet_newproc(rxTaskName, 4096,
mcf548x_fec_rxDaemon, sc);
}
mcf548x_fec_request_restart(sc);
/*
* Set flags appropriately
*/
if(ifp->if_flags & IFF_PROMISC)
MCF548X_FEC_RCR(chan) |= MCF548X_FEC_RCR_PROM;
else
MCF548X_FEC_RCR(chan) &= ~MCF548X_FEC_RCR_PROM;
/*
* init timer so the "watchdog function gets called periodically
*/
callout_reset(&sc->watchdogCallout, hz, mcf548x_fec_watchdog, sc);
/*
* Tell the world that we're running.
*/
ifp->if_drv_flags |= IFF_DRV_RUNNING;
}
static void enet_stats (struct mcf548x_enet_struct *sc)
{
printf (" Rx Interrupts:%-8lu", sc->rxInterrupts);
printf (" Rx Not First:%-8lu", sc->rxNotFirst);
printf (" Rx Not Last:%-8lu\n", sc->rxNotLast);
printf (" Rx Giant:%-8lu", sc->rxGiant);
printf (" Rx Non-octet:%-8lu", sc->rxNonOctet);
printf (" Rx Bad CRC:%-8lu\n", sc->rxBadCRC);
printf (" Rx FIFO Error:%-8lu", sc->rxFIFOError);
printf (" Rx Collision:%-8lu", sc->rxCollision);
printf (" Tx Interrupts:%-8lu\n", sc->txInterrupts);
printf (" Tx Deferred:%-8lu", sc->txDeferred);
printf (" Tx Late Collision:%-8lu", sc->txLateCollision);
printf (" Tx Retransmit Limit:%-8lu\n", sc->txRetryLimit);
printf (" Tx Underrun:%-8lu", sc->txUnderrun);
printf (" Tx FIFO Error:%-8lu", sc->txFIFOError);
printf (" Tx Misaligned:%-8lu\n", sc->txMisaligned);
}
int32_t mcf548x_fec_setMultiFilter(struct ifnet *ifp)
{
/*struct mcf548x_enet_struct *sc = ifp->if_softc; */
/* XXX anything to do? */
return 0;
}
/*
* Driver ioctl handler
*/
static int mcf548x_fec_ioctl (struct ifnet *ifp, ioctl_command_t command, caddr_t data)
{
struct mcf548x_enet_struct *sc = ifp->if_softc;
int error = 0;
switch(command)
{
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
mcf548x_fec_init(sc);
}
}
break;
case SIO_RTEMS_SHOW_STATS:
enet_stats(sc);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return error;
}
/*
* init the PHY and adapt FEC settings
*/
int mcf548x_fec_mode_adapt(struct ifnet *ifp)
{
int result = 0;
struct mcf548x_enet_struct *sc = ifp->if_softc;
int media = IFM_MAKEWORD( 0, 0, 0, sc->phy_default);
int chan = sc->chan;
/*
* fetch media status
*/
result = mcf548x_fec_ioctl(ifp,SIOCGIFMEDIA,(caddr_t)&media);
if (result != 0) {
return result;
}
/*
* status is unchanged? then do nothing
*/
if (media == sc->media_state) {
return 0;
}
/*
* otherwise: for the first call, try to negotiate mode
*/
if (sc->media_state == 0) {
/*
* set media status: set auto negotiation -> start auto-negotiation
*/
media = IFM_MAKEWORD(0,IFM_AUTO,0,sc->phy_default);
result = mcf548x_fec_ioctl(ifp,SIOCSIFMEDIA,(caddr_t)&media);
if (result != 0) {
return result;
}
/*
* wait for auto-negotiation to terminate
*/
do {
media = IFM_MAKEWORD(0,0,0,sc->phy_default);
result = mcf548x_fec_ioctl(ifp,SIOCGIFMEDIA,(caddr_t)&media);
if (result != 0) {
return result;
}
} while (IFM_NONE == IFM_SUBTYPE(media));
}
/*
* now set HW according to media results:
*/
/*
* if we are half duplex then switch to half duplex
*/
if (0 == (IFM_FDX & IFM_OPTIONS(media))) {
MCF548X_FEC_TCR(chan) &= ~MCF548X_FEC_TCR_FDEN;
}
else {
MCF548X_FEC_TCR(chan) |= MCF548X_FEC_TCR_FDEN;
}
/*
* store current media state for future compares
*/
sc->media_state = media;
return 0;
}
/*
* periodically poll the PHY. if mode has changed,
* then adjust the FEC settings
*/
static void mcf548x_fec_watchdog(void *arg)
{
struct mcf548x_enet_struct *sc = arg;
mcf548x_fec_mode_adapt(sc->ifp);
callout_reset(&sc->watchdogCallout, FEC_WATCHDOG_TIMEOUT * hz, mcf548x_fec_watchdog, sc);
}
static const uint8_t eaddr[NIFACES][ETHER_ADDR_LEN] = {
{ 0x0e, 0xb0, 0xba, 0x5e, 0xba, 0x12 },
{ 0x0e, 0xb0, 0xba, 0x5e, 0xba, 0x13 }
};
/*
* Attach the MCF548X fec driver to the system
*/
static int fec_attach(device_t dev)
{
struct mcf548x_enet_struct *sc;
struct ifnet *ifp;
int unit = device_get_unit(dev);
sc = device_get_softc(dev);
sc->dev = dev;
sc->chan = unit;
sc->ifp = ifp = if_alloc(IFT_ETHER);
mtx_init(&sc->mtx, device_get_nameunit(sc->dev), MTX_NETWORK_LOCK, MTX_DEF);
callout_init_mtx(&sc->watchdogCallout, &sc->mtx, 0);
sc->rxBdCount = RX_BUF_COUNT;
sc->txBdCount = TX_BUF_COUNT * TX_BD_PER_BUF;
sc->acceptBroadcast = 1;
/*
* setup info about mdio interface
*/
sc->mdio_info.mdio_r = mcf548x_eth_mii_read;
sc->mdio_info.mdio_w = mcf548x_eth_mii_write;
sc->mdio_info.has_gmii = 0; /* we do not support gigabit IF */
/*
* XXX: Although most hardware builders will assign the PHY addresses
* like this, this should be more configurable
*/
sc->phy_default = unit;
sc->phy_chan = 0; /* assume all MII accesses are via FEC0 */
fec_vector_to_sc[unit] = sc;
/*
* Set up network interface values
*/
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_init = mcf548x_fec_init;
ifp->if_ioctl = mcf548x_fec_ioctl;
ifp->if_start = mcf548x_fec_tx_start;
ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX;
IFQ_SET_MAXLEN(&ifp->if_snd, TX_BUF_COUNT - 1);
ifp->if_snd.ifq_drv_maxlen = TX_BUF_COUNT - 1;
IFQ_SET_READY(&ifp->if_snd);
ifp->if_data.ifi_hdrlen = sizeof(struct ether_header);
/*
* Attach the interface
*/
ether_ifattach(ifp, &eaddr[unit][0]);
return 0;
}
static int
fec_probe(device_t dev)
{
int unit = device_get_unit(dev);
int error;
if (unit >= 0 && unit < NIFACES) {
error = BUS_PROBE_DEFAULT;
} else {
error = ENXIO;
}
return (error);
}
static device_method_t fec_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, fec_probe),
DEVMETHOD(device_attach, fec_attach),
DEVMETHOD_END
};
static driver_t fec_nexus_driver = {
"fec",
fec_methods,
sizeof(struct mcf548x_enet_struct)
};
static devclass_t fec_devclass;
DRIVER_MODULE(fec, nexus, fec_nexus_driver, fec_devclass, 0, 0);
MODULE_DEPEND(fec, nexus, 1, 1, 1);
MODULE_DEPEND(fec, ether, 1, 1, 1);
#endif /* LIBBSP_M68K_GENMCF548X_BSP_H */