rtems-libbsd/rtemsbsd/rtems/rtems-kernel-bus-dma.c
Chris Johns 3f1e128488 rtemsbsd/bus: Add PCI support to the nexus bus
- Add PCI IO region support

- Add support map buffers to PCI address space

- Add BSP conditional IO space support. Some PC implementations
  have PCI IO space mapped differently to memory space and this needs
  to be reflected in the busspace.

- Include bsp.h to pick per BSP configuration.

Closes #4245
2021-08-27 16:53:41 +10:00

459 lines
12 KiB
C

/**
* @file
*
* @ingroup rtems_bsd_rtems
*
* @brief TODO.
*
* File origin from FreeBSD "sys/powerpc/powerpc/busdma_machdep.c".
*/
/*
* Copyright (c) 2009-2012 embedded brains GmbH.
* All rights reserved.
*
* embedded brains GmbH
* Obere Lagerstr. 30
* 82178 Puchheim
* Germany
* <rtems@embedded-brains.de>
*
* Copyright (c) 2004 Olivier Houchard
* Copyright (c) 2002 Peter Grehan
* Copyright (c) 1997, 1998 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <machine/rtems-bsd-kernel-space.h>
#include <machine/rtems-bsd-cache.h>
#include <machine/rtems-bsd-bus-dma.h>
#include <rtems/malloc.h>
#include <sys/malloc.h>
#include <machine/atomic.h>
#ifdef CPU_DATA_CACHE_ALIGNMENT
#define CLSZ ((uintptr_t) CPU_DATA_CACHE_ALIGNMENT)
#define CLMASK (CLSZ - (uintptr_t) 1)
#endif
#ifdef __arm__
#include <bsp/linker-symbols.h>
#endif
/*
* Convenience function for manipulating driver locks from busdma (during
* busdma_swi, for example). Drivers that don't provide their own locks
* should specify &Giant to dmat->lockfuncarg. Drivers that use their own
* non-mutex locking scheme don't have to use this at all.
*/
void
busdma_lock_mutex(void *arg, bus_dma_lock_op_t op)
{
struct mtx *dmtx;
dmtx = (struct mtx *)arg;
switch (op) {
case BUS_DMA_LOCK:
mtx_lock(dmtx);
break;
case BUS_DMA_UNLOCK:
mtx_unlock(dmtx);
break;
default:
panic("Unknown operation 0x%x for busdma_lock_mutex!", op);
}
}
/*
* dflt_lock should never get called. It gets put into the dma tag when
* lockfunc == NULL, which is only valid if the maps that are associated
* with the tag are meant to never be defered.
* XXX Should have a way to identify which driver is responsible here.
*/
static void
dflt_lock(void *arg, bus_dma_lock_op_t op)
{
panic("driver error: busdma dflt_lock called");
}
/*
* Allocate a device specific dma_tag.
*/
int
bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
bus_size_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize,
int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
void *lockfuncarg, bus_dma_tag_t *dmat)
{
bus_dma_tag_t newtag;
int error = 0;
/* Return a NULL tag on failure */
*dmat = NULL;
newtag = malloc(sizeof(*newtag), M_DEVBUF, M_NOWAIT | M_ZERO);
if (newtag == NULL)
return (ENOMEM);
newtag->parent = parent;
newtag->alignment = alignment;
newtag->boundary = boundary;
newtag->lowaddr = lowaddr;
newtag->highaddr = highaddr;
newtag->filter = filter;
newtag->filterarg = filterarg;
newtag->maxsize = maxsize;
newtag->nsegments = nsegments;
newtag->maxsegsz = maxsegsz;
newtag->flags = flags;
newtag->ref_count = 1; /* Count ourself */
newtag->map_count = 0;
if (lockfunc != NULL) {
newtag->lockfunc = lockfunc;
newtag->lockfuncarg = lockfuncarg;
} else {
newtag->lockfunc = dflt_lock;
newtag->lockfuncarg = NULL;
}
/*
* Take into account any restrictions imposed by our parent tag
*/
if (parent != NULL) {
newtag->lowaddr = min(parent->lowaddr, newtag->lowaddr);
newtag->highaddr = max(parent->highaddr, newtag->highaddr);
if (newtag->boundary == 0)
newtag->boundary = parent->boundary;
else if (parent->boundary != 0)
newtag->boundary = MIN(parent->boundary,
newtag->boundary);
if (newtag->filter == NULL) {
/*
* Short circuit looking at our parent directly
* since we have encapsulated all of its information
*/
newtag->filter = parent->filter;
newtag->filterarg = parent->filterarg;
newtag->parent = parent->parent;
}
if (newtag->parent != NULL)
atomic_add_int(&parent->ref_count, 1);
}
*dmat = newtag;
return (error);
}
int
bus_dma_tag_destroy(bus_dma_tag_t dmat)
{
if (dmat != NULL) {
if (dmat->map_count != 0)
return (EBUSY);
while (dmat != NULL) {
bus_dma_tag_t parent;
parent = dmat->parent;
atomic_subtract_int(&dmat->ref_count, 1);
if (dmat->ref_count == 0) {
free(dmat, M_DEVBUF);
/*
* Last reference count, so
* release our reference
* count on our parent.
*/
dmat = parent;
} else
dmat = NULL;
}
}
return (0);
}
/*
* Allocate a handle for mapping from kva/uva/physical
* address space into bus device space.
*/
int
bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
{
*mapp = malloc(sizeof(**mapp), M_DEVBUF, M_NOWAIT | M_ZERO);
if (*mapp == NULL) {
return ENOMEM;
}
dmat->map_count++;
return (0);
}
/*
* Destroy a handle for mapping from kva/uva/physical
* address space into bus device space.
*/
int
bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
{
free(map, M_DEVBUF);
dmat->map_count--;
return (0);
}
/*
* Allocate a piece of memory that can be efficiently mapped into
* bus device space based on the constraints lited in the dma tag.
* A dmamap to for use with dmamap_load is also allocated.
*/
int
bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
bus_dmamap_t *mapp)
{
*mapp = malloc(sizeof(**mapp), M_DEVBUF, M_NOWAIT | M_ZERO);
if (*mapp == NULL) {
return ENOMEM;
}
if ((flags & BUS_DMA_COHERENT) != 0) {
*vaddr = rtems_cache_coherent_allocate(
dmat->maxsize, dmat->alignment, dmat->boundary);
} else {
*vaddr = rtems_heap_allocate_aligned_with_boundary(
dmat->maxsize, dmat->alignment, dmat->boundary);
}
if (*vaddr == NULL) {
free(*mapp, M_DEVBUF);
return ENOMEM;
}
(*mapp)->buffer_begin = *vaddr;
(*mapp)->buffer_size = dmat->maxsize;
if ((flags & BUS_DMA_ZERO) != 0) {
memset(*vaddr, 0, dmat->maxsize);
}
return (0);
}
/*
* Free a piece of memory and it's allocated dmamap, that was allocated
* via bus_dmamem_alloc. Make the same choice for free/contigfree.
*/
void
bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
{
rtems_cache_coherent_free(vaddr);
free(map, M_DEVBUF);
}
/*
* Utility function to load a linear buffer. lastaddrp holds state
* between invocations (for multiple-buffer loads). segp contains
* the starting segment on entrance, and the ending segment on exit.
* first indicates if this is the first invocation of this function.
*/
int
bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dma_segment_t segs[],
void *buf, bus_size_t buflen, struct thread *td, int flags,
vm_offset_t *lastaddrp, int *segp, int first)
{
bus_size_t sgsize;
bus_addr_t curaddr, lastaddr, baddr, bmask;
vm_offset_t vaddr = (vm_offset_t)buf;
int seg;
#ifdef RTEMS_BSP_PCI_MEM_REGION_BASE
vaddr += RTEMS_BSP_PCI_MEM_REGION_BASE;
#endif
lastaddr = *lastaddrp;
bmask = ~(dmat->boundary - 1);
for (seg = *segp; buflen > 0 ; ) {
/*
* Get the physical address for this segment.
*/
curaddr = vaddr;
/*
* Compute the segment size, and adjust counts.
*/
sgsize = PAGE_SIZE - ((u_long)curaddr & PAGE_MASK);
if (sgsize > dmat->maxsegsz)
sgsize = dmat->maxsegsz;
if (buflen < sgsize)
sgsize = buflen;
/*
* Make sure we don't cross any boundaries.
*/
if (dmat->boundary > 0) {
baddr = (curaddr + dmat->boundary) & bmask;
if (sgsize > (baddr - curaddr))
sgsize = (baddr - curaddr);
}
/*
* Insert chunk into a segment, coalescing with
* the previous segment if possible.
*/
if (first) {
segs[seg].ds_addr = curaddr;
segs[seg].ds_len = sgsize;
first = 0;
} else {
if (curaddr == lastaddr &&
(segs[seg].ds_len + sgsize) <= dmat->maxsegsz &&
(dmat->boundary == 0 ||
(segs[seg].ds_addr & bmask) == (curaddr & bmask)))
segs[seg].ds_len += sgsize;
else {
if (++seg >= dmat->nsegments)
break;
segs[seg].ds_addr = curaddr;
segs[seg].ds_len = sgsize;
}
}
lastaddr = curaddr + sgsize;
vaddr += sgsize;
buflen -= sgsize;
}
*segp = seg;
*lastaddrp = lastaddr;
/*
* Did we fit?
*/
return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */
}
/*
* Map the buffer buf into bus space using the dmamap map.
*/
int
bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
bus_size_t buflen, bus_dmamap_callback_t *callback,
void *callback_arg, int flags)
{
bus_dma_segment_t dm_segments[dmat->nsegments];
vm_offset_t lastaddr;
int error, nsegs;
map->buffer_begin = buf;
map->buffer_size = buflen;
if ((flags & BUS_DMA_DO_CACHE_LINE_BLOW_UP) != 0) {
map->flags |= DMAMAP_CACHE_ALIGNED;
}
lastaddr = (vm_offset_t)0;
nsegs = 0;
error = bus_dmamap_load_buffer(dmat, dm_segments, buf, buflen,
NULL, flags, &lastaddr, &nsegs, 1);
if (error == 0)
(*callback)(callback_arg, dm_segments, nsegs + 1, 0);
else
(*callback)(callback_arg, NULL, 0, error);
return (0);
}
/*
* Release the mapping held by map. A no-op on PowerPC.
*/
void
bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
{
return;
}
void
bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)
{
#ifdef CPU_DATA_CACHE_ALIGNMENT
uintptr_t size = map->buffer_size;
uintptr_t begin = (uintptr_t) map->buffer_begin;
uintptr_t end = begin + size;
#ifdef __arm__
if (begin >= (uintptr_t)bsp_section_nocache_begin &&
end <= (uintptr_t)bsp_section_nocachenoload_end) {
return;
}
#endif
if ((map->flags & DMAMAP_CACHE_ALIGNED) != 0) {
begin &= ~CLMASK;
end = (end + CLMASK) & ~CLMASK;
size = end - begin;
}
if ((op & BUS_DMASYNC_PREWRITE) != 0 && (op & BUS_DMASYNC_PREREAD) == 0) {
rtems_cache_flush_multiple_data_lines((void *) begin, size);
}
if ((op & BUS_DMASYNC_PREREAD) != 0) {
if ((op & BUS_DMASYNC_PREWRITE) != 0 || ((begin | size) & CLMASK) != 0) {
rtems_cache_flush_multiple_data_lines((void *) begin, size);
}
rtems_cache_invalidate_multiple_data_lines((void *) begin, size);
}
if ((op & BUS_DMASYNC_POSTREAD) != 0) {
char first_buf [CLSZ];
char last_buf [CLSZ];
bool first_is_aligned = (begin & CLMASK) == 0;
bool last_is_aligned = (end & CLMASK) == 0;
void *first_begin = (void *) (begin & ~CLMASK);
size_t first_size = begin & CLMASK;
void *last_begin = (void *) end;
size_t last_size = CLSZ - (end & CLMASK);
if (!first_is_aligned) {
memcpy(first_buf, first_begin, first_size);
}
if (!last_is_aligned) {
memcpy(last_buf, last_begin, last_size);
}
rtems_cache_invalidate_multiple_data_lines((void *) begin, size);
if (!first_is_aligned) {
memcpy(first_begin, first_buf, first_size);
}
if (!last_is_aligned) {
memcpy(last_begin, last_buf, last_size);
}
}
#endif /* CPU_DATA_CACHE_ALIGNMENT */
}