mirror of
https://git.rtems.org/rtems-libbsd/
synced 2025-05-15 07:36:51 +08:00

- Add PCI IO region support - Add support map buffers to PCI address space - Add BSP conditional IO space support. Some PC implementations have PCI IO space mapped differently to memory space and this needs to be reflected in the busspace. - Include bsp.h to pick per BSP configuration. Closes #4245
459 lines
12 KiB
C
459 lines
12 KiB
C
/**
|
|
* @file
|
|
*
|
|
* @ingroup rtems_bsd_rtems
|
|
*
|
|
* @brief TODO.
|
|
*
|
|
* File origin from FreeBSD "sys/powerpc/powerpc/busdma_machdep.c".
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2009-2012 embedded brains GmbH.
|
|
* All rights reserved.
|
|
*
|
|
* embedded brains GmbH
|
|
* Obere Lagerstr. 30
|
|
* 82178 Puchheim
|
|
* Germany
|
|
* <rtems@embedded-brains.de>
|
|
*
|
|
* Copyright (c) 2004 Olivier Houchard
|
|
* Copyright (c) 2002 Peter Grehan
|
|
* Copyright (c) 1997, 1998 Justin T. Gibbs.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification, immediately at the beginning of the file.
|
|
* 2. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <machine/rtems-bsd-kernel-space.h>
|
|
#include <machine/rtems-bsd-cache.h>
|
|
#include <machine/rtems-bsd-bus-dma.h>
|
|
|
|
#include <rtems/malloc.h>
|
|
|
|
#include <sys/malloc.h>
|
|
#include <machine/atomic.h>
|
|
|
|
#ifdef CPU_DATA_CACHE_ALIGNMENT
|
|
#define CLSZ ((uintptr_t) CPU_DATA_CACHE_ALIGNMENT)
|
|
#define CLMASK (CLSZ - (uintptr_t) 1)
|
|
#endif
|
|
|
|
#ifdef __arm__
|
|
#include <bsp/linker-symbols.h>
|
|
#endif
|
|
|
|
/*
|
|
* Convenience function for manipulating driver locks from busdma (during
|
|
* busdma_swi, for example). Drivers that don't provide their own locks
|
|
* should specify &Giant to dmat->lockfuncarg. Drivers that use their own
|
|
* non-mutex locking scheme don't have to use this at all.
|
|
*/
|
|
void
|
|
busdma_lock_mutex(void *arg, bus_dma_lock_op_t op)
|
|
{
|
|
struct mtx *dmtx;
|
|
|
|
dmtx = (struct mtx *)arg;
|
|
switch (op) {
|
|
case BUS_DMA_LOCK:
|
|
mtx_lock(dmtx);
|
|
break;
|
|
case BUS_DMA_UNLOCK:
|
|
mtx_unlock(dmtx);
|
|
break;
|
|
default:
|
|
panic("Unknown operation 0x%x for busdma_lock_mutex!", op);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* dflt_lock should never get called. It gets put into the dma tag when
|
|
* lockfunc == NULL, which is only valid if the maps that are associated
|
|
* with the tag are meant to never be defered.
|
|
* XXX Should have a way to identify which driver is responsible here.
|
|
*/
|
|
static void
|
|
dflt_lock(void *arg, bus_dma_lock_op_t op)
|
|
{
|
|
panic("driver error: busdma dflt_lock called");
|
|
}
|
|
|
|
/*
|
|
* Allocate a device specific dma_tag.
|
|
*/
|
|
int
|
|
bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
|
|
bus_size_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
|
|
bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize,
|
|
int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
|
|
void *lockfuncarg, bus_dma_tag_t *dmat)
|
|
{
|
|
bus_dma_tag_t newtag;
|
|
int error = 0;
|
|
|
|
/* Return a NULL tag on failure */
|
|
*dmat = NULL;
|
|
|
|
newtag = malloc(sizeof(*newtag), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (newtag == NULL)
|
|
return (ENOMEM);
|
|
|
|
newtag->parent = parent;
|
|
newtag->alignment = alignment;
|
|
newtag->boundary = boundary;
|
|
newtag->lowaddr = lowaddr;
|
|
newtag->highaddr = highaddr;
|
|
newtag->filter = filter;
|
|
newtag->filterarg = filterarg;
|
|
newtag->maxsize = maxsize;
|
|
newtag->nsegments = nsegments;
|
|
newtag->maxsegsz = maxsegsz;
|
|
newtag->flags = flags;
|
|
newtag->ref_count = 1; /* Count ourself */
|
|
newtag->map_count = 0;
|
|
if (lockfunc != NULL) {
|
|
newtag->lockfunc = lockfunc;
|
|
newtag->lockfuncarg = lockfuncarg;
|
|
} else {
|
|
newtag->lockfunc = dflt_lock;
|
|
newtag->lockfuncarg = NULL;
|
|
}
|
|
|
|
/*
|
|
* Take into account any restrictions imposed by our parent tag
|
|
*/
|
|
if (parent != NULL) {
|
|
newtag->lowaddr = min(parent->lowaddr, newtag->lowaddr);
|
|
newtag->highaddr = max(parent->highaddr, newtag->highaddr);
|
|
if (newtag->boundary == 0)
|
|
newtag->boundary = parent->boundary;
|
|
else if (parent->boundary != 0)
|
|
newtag->boundary = MIN(parent->boundary,
|
|
newtag->boundary);
|
|
if (newtag->filter == NULL) {
|
|
/*
|
|
* Short circuit looking at our parent directly
|
|
* since we have encapsulated all of its information
|
|
*/
|
|
newtag->filter = parent->filter;
|
|
newtag->filterarg = parent->filterarg;
|
|
newtag->parent = parent->parent;
|
|
}
|
|
if (newtag->parent != NULL)
|
|
atomic_add_int(&parent->ref_count, 1);
|
|
}
|
|
|
|
*dmat = newtag;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
bus_dma_tag_destroy(bus_dma_tag_t dmat)
|
|
{
|
|
if (dmat != NULL) {
|
|
|
|
if (dmat->map_count != 0)
|
|
return (EBUSY);
|
|
|
|
while (dmat != NULL) {
|
|
bus_dma_tag_t parent;
|
|
|
|
parent = dmat->parent;
|
|
atomic_subtract_int(&dmat->ref_count, 1);
|
|
if (dmat->ref_count == 0) {
|
|
free(dmat, M_DEVBUF);
|
|
/*
|
|
* Last reference count, so
|
|
* release our reference
|
|
* count on our parent.
|
|
*/
|
|
dmat = parent;
|
|
} else
|
|
dmat = NULL;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate a handle for mapping from kva/uva/physical
|
|
* address space into bus device space.
|
|
*/
|
|
int
|
|
bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
|
|
{
|
|
*mapp = malloc(sizeof(**mapp), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (*mapp == NULL) {
|
|
return ENOMEM;
|
|
}
|
|
|
|
dmat->map_count++;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Destroy a handle for mapping from kva/uva/physical
|
|
* address space into bus device space.
|
|
*/
|
|
int
|
|
bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
|
|
{
|
|
free(map, M_DEVBUF);
|
|
|
|
dmat->map_count--;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allocate a piece of memory that can be efficiently mapped into
|
|
* bus device space based on the constraints lited in the dma tag.
|
|
* A dmamap to for use with dmamap_load is also allocated.
|
|
*/
|
|
int
|
|
bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
|
|
bus_dmamap_t *mapp)
|
|
{
|
|
*mapp = malloc(sizeof(**mapp), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (*mapp == NULL) {
|
|
return ENOMEM;
|
|
}
|
|
|
|
if ((flags & BUS_DMA_COHERENT) != 0) {
|
|
*vaddr = rtems_cache_coherent_allocate(
|
|
dmat->maxsize, dmat->alignment, dmat->boundary);
|
|
} else {
|
|
*vaddr = rtems_heap_allocate_aligned_with_boundary(
|
|
dmat->maxsize, dmat->alignment, dmat->boundary);
|
|
}
|
|
|
|
if (*vaddr == NULL) {
|
|
free(*mapp, M_DEVBUF);
|
|
return ENOMEM;
|
|
}
|
|
|
|
(*mapp)->buffer_begin = *vaddr;
|
|
(*mapp)->buffer_size = dmat->maxsize;
|
|
|
|
if ((flags & BUS_DMA_ZERO) != 0) {
|
|
memset(*vaddr, 0, dmat->maxsize);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free a piece of memory and it's allocated dmamap, that was allocated
|
|
* via bus_dmamem_alloc. Make the same choice for free/contigfree.
|
|
*/
|
|
void
|
|
bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
|
|
{
|
|
rtems_cache_coherent_free(vaddr);
|
|
free(map, M_DEVBUF);
|
|
}
|
|
|
|
/*
|
|
* Utility function to load a linear buffer. lastaddrp holds state
|
|
* between invocations (for multiple-buffer loads). segp contains
|
|
* the starting segment on entrance, and the ending segment on exit.
|
|
* first indicates if this is the first invocation of this function.
|
|
*/
|
|
int
|
|
bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dma_segment_t segs[],
|
|
void *buf, bus_size_t buflen, struct thread *td, int flags,
|
|
vm_offset_t *lastaddrp, int *segp, int first)
|
|
{
|
|
bus_size_t sgsize;
|
|
bus_addr_t curaddr, lastaddr, baddr, bmask;
|
|
vm_offset_t vaddr = (vm_offset_t)buf;
|
|
int seg;
|
|
|
|
#ifdef RTEMS_BSP_PCI_MEM_REGION_BASE
|
|
vaddr += RTEMS_BSP_PCI_MEM_REGION_BASE;
|
|
#endif
|
|
|
|
lastaddr = *lastaddrp;
|
|
bmask = ~(dmat->boundary - 1);
|
|
|
|
for (seg = *segp; buflen > 0 ; ) {
|
|
/*
|
|
* Get the physical address for this segment.
|
|
*/
|
|
curaddr = vaddr;
|
|
|
|
/*
|
|
* Compute the segment size, and adjust counts.
|
|
*/
|
|
sgsize = PAGE_SIZE - ((u_long)curaddr & PAGE_MASK);
|
|
if (sgsize > dmat->maxsegsz)
|
|
sgsize = dmat->maxsegsz;
|
|
if (buflen < sgsize)
|
|
sgsize = buflen;
|
|
|
|
/*
|
|
* Make sure we don't cross any boundaries.
|
|
*/
|
|
if (dmat->boundary > 0) {
|
|
baddr = (curaddr + dmat->boundary) & bmask;
|
|
if (sgsize > (baddr - curaddr))
|
|
sgsize = (baddr - curaddr);
|
|
}
|
|
|
|
/*
|
|
* Insert chunk into a segment, coalescing with
|
|
* the previous segment if possible.
|
|
*/
|
|
if (first) {
|
|
segs[seg].ds_addr = curaddr;
|
|
segs[seg].ds_len = sgsize;
|
|
first = 0;
|
|
} else {
|
|
if (curaddr == lastaddr &&
|
|
(segs[seg].ds_len + sgsize) <= dmat->maxsegsz &&
|
|
(dmat->boundary == 0 ||
|
|
(segs[seg].ds_addr & bmask) == (curaddr & bmask)))
|
|
segs[seg].ds_len += sgsize;
|
|
else {
|
|
if (++seg >= dmat->nsegments)
|
|
break;
|
|
segs[seg].ds_addr = curaddr;
|
|
segs[seg].ds_len = sgsize;
|
|
}
|
|
}
|
|
|
|
lastaddr = curaddr + sgsize;
|
|
vaddr += sgsize;
|
|
buflen -= sgsize;
|
|
}
|
|
|
|
*segp = seg;
|
|
*lastaddrp = lastaddr;
|
|
|
|
/*
|
|
* Did we fit?
|
|
*/
|
|
return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */
|
|
}
|
|
|
|
/*
|
|
* Map the buffer buf into bus space using the dmamap map.
|
|
*/
|
|
int
|
|
bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
|
|
bus_size_t buflen, bus_dmamap_callback_t *callback,
|
|
void *callback_arg, int flags)
|
|
{
|
|
bus_dma_segment_t dm_segments[dmat->nsegments];
|
|
vm_offset_t lastaddr;
|
|
int error, nsegs;
|
|
|
|
map->buffer_begin = buf;
|
|
map->buffer_size = buflen;
|
|
if ((flags & BUS_DMA_DO_CACHE_LINE_BLOW_UP) != 0) {
|
|
map->flags |= DMAMAP_CACHE_ALIGNED;
|
|
}
|
|
|
|
lastaddr = (vm_offset_t)0;
|
|
nsegs = 0;
|
|
|
|
error = bus_dmamap_load_buffer(dmat, dm_segments, buf, buflen,
|
|
NULL, flags, &lastaddr, &nsegs, 1);
|
|
|
|
if (error == 0)
|
|
(*callback)(callback_arg, dm_segments, nsegs + 1, 0);
|
|
else
|
|
(*callback)(callback_arg, NULL, 0, error);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Release the mapping held by map. A no-op on PowerPC.
|
|
*/
|
|
void
|
|
bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
|
|
{
|
|
|
|
return;
|
|
}
|
|
|
|
void
|
|
bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op)
|
|
{
|
|
#ifdef CPU_DATA_CACHE_ALIGNMENT
|
|
uintptr_t size = map->buffer_size;
|
|
uintptr_t begin = (uintptr_t) map->buffer_begin;
|
|
uintptr_t end = begin + size;
|
|
#ifdef __arm__
|
|
if (begin >= (uintptr_t)bsp_section_nocache_begin &&
|
|
end <= (uintptr_t)bsp_section_nocachenoload_end) {
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if ((map->flags & DMAMAP_CACHE_ALIGNED) != 0) {
|
|
begin &= ~CLMASK;
|
|
end = (end + CLMASK) & ~CLMASK;
|
|
size = end - begin;
|
|
}
|
|
if ((op & BUS_DMASYNC_PREWRITE) != 0 && (op & BUS_DMASYNC_PREREAD) == 0) {
|
|
rtems_cache_flush_multiple_data_lines((void *) begin, size);
|
|
}
|
|
if ((op & BUS_DMASYNC_PREREAD) != 0) {
|
|
if ((op & BUS_DMASYNC_PREWRITE) != 0 || ((begin | size) & CLMASK) != 0) {
|
|
rtems_cache_flush_multiple_data_lines((void *) begin, size);
|
|
}
|
|
rtems_cache_invalidate_multiple_data_lines((void *) begin, size);
|
|
}
|
|
if ((op & BUS_DMASYNC_POSTREAD) != 0) {
|
|
char first_buf [CLSZ];
|
|
char last_buf [CLSZ];
|
|
bool first_is_aligned = (begin & CLMASK) == 0;
|
|
bool last_is_aligned = (end & CLMASK) == 0;
|
|
void *first_begin = (void *) (begin & ~CLMASK);
|
|
size_t first_size = begin & CLMASK;
|
|
void *last_begin = (void *) end;
|
|
size_t last_size = CLSZ - (end & CLMASK);
|
|
|
|
if (!first_is_aligned) {
|
|
memcpy(first_buf, first_begin, first_size);
|
|
}
|
|
if (!last_is_aligned) {
|
|
memcpy(last_buf, last_begin, last_size);
|
|
}
|
|
|
|
rtems_cache_invalidate_multiple_data_lines((void *) begin, size);
|
|
|
|
if (!first_is_aligned) {
|
|
memcpy(first_begin, first_buf, first_size);
|
|
}
|
|
if (!last_is_aligned) {
|
|
memcpy(last_begin, last_buf, last_size);
|
|
}
|
|
}
|
|
#endif /* CPU_DATA_CACHE_ALIGNMENT */
|
|
}
|