Chris Johns 6514d56158 sys/kern: Add VFS support
- Refactor the libio interface

- Move syscalls into an rtemsbsd location

- Provide a root directory mount point

Update #4475
2021-08-28 10:25:46 +10:00

925 lines
21 KiB
C++

/**
* @file
*
* @ingroup rtems_bsd_machine
*
* @brief TODO.
*/
/*
* Copyright (c) 2020 Chris Johns All rights reserved.
* Copyright (c) 2009, 2015 embedded brains GmbH. All rights reserved.
*
* embedded brains GmbH
* Dornierstr. 4
* 82178 Puchheim
* Germany
* <rtems@embedded-brains.de>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _RTEMS_BSD_MACHINE_ATOMIC_H_
#define _RTEMS_BSD_MACHINE_ATOMIC_H_
#include <rtems.h>
#ifdef RTEMS_SMP
#if defined(__cplusplus) \
&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 9))
/*
* The GCC 4.9 ships its own <stdatomic.h> which is not C++ compatible. The
* suggested solution was to include <atomic> in case C++ is used. This works
* at least with GCC 4.9. See also:
*
* http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60932
* http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60940
*/
#include <atomic>
#define _RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC
#else
#include <stdatomic.h>
#define _RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC
#endif
#endif
static inline void
mb(void)
{
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
std::atomic_thread_fence(std::memory_order_seq_cst);
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
atomic_thread_fence(memory_order_seq_cst);
#else
RTEMS_COMPILER_MEMORY_BARRIER();
#endif
}
static inline void
wmb(void)
{
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
std::atomic_thread_fence(std::memory_order_release);
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
atomic_thread_fence(memory_order_release);
#else
RTEMS_COMPILER_MEMORY_BARRIER();
#endif
}
static inline void
rmb(void)
{
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
std::atomic_thread_fence(std::memory_order_acquire);
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
atomic_thread_fence(memory_order_acquire);
#else
RTEMS_COMPILER_MEMORY_BARRIER();
#endif
}
/*
* Load
*/
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
#define _ATOMIC_LOAD(T, p, mo, barrier) \
std::atomic_##T *q = \
reinterpret_cast<std::atomic_##T *>(const_cast<T *>(p)); \
tmp = q->load(std::mo)
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
#define _ATOMIC_LOAD(T, p, mo, barrier) \
atomic_##T *q = (atomic_##T *)RTEMS_DEVOLATILE(T *, p); \
tmp = atomic_load_explicit(q, mo)
#else
#define _ATOMIC_LOAD(T, p, mo, barrier) \
if (barrier) \
RTEMS_COMPILER_MEMORY_BARRIER(); \
tmp = *p
#endif
static inline int
atomic_load_int(volatile int *p)
{
int tmp;
_ATOMIC_LOAD(int, p, memory_order_relaxed, false);
return (tmp);
}
static inline int
atomic_load_acq_int(volatile int *p)
{
int tmp;
_ATOMIC_LOAD(int, p, memory_order_acquire, true);
return (tmp);
}
static inline uint32_t
atomic_load_32(volatile uint32_t *p)
{
uint32_t tmp;
_ATOMIC_LOAD(uint_fast32_t, p, memory_order_relaxed, false);
return (tmp);
}
static inline uint32_t
atomic_load_acq_32(volatile uint32_t *p)
{
uint32_t tmp;
_ATOMIC_LOAD(uint_fast32_t, p, memory_order_acquire, true);
return (tmp);
}
static inline long
atomic_load_long(volatile long *p)
{
long tmp;
_ATOMIC_LOAD(long, p, memory_order_relaxed, false);
return (tmp);
}
static inline long
atomic_load_acq_long(volatile long *p)
{
long tmp;
_ATOMIC_LOAD(long, p, memory_order_acquire, true);
return (tmp);
}
/*
* Store
*/
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
#define _ATOMIC_STORE(T, p, v, mo, barrier) \
std::atomic_##T *q = \
reinterpret_cast<std::atomic_##T *>(const_cast<T *>(p)); \
q->store(std::mo)
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
#define _ATOMIC_STORE(T, p, v, mo, barrier) \
atomic_##T *q = (atomic_##T *)RTEMS_DEVOLATILE(T *, p); \
atomic_store_explicit(q, v, mo)
#else
#define _ATOMIC_STORE(T, p, v, mo, barrier) \
*p = v; \
if (barrier) \
RTEMS_COMPILER_MEMORY_BARRIER()
#endif
static inline void
atomic_store_int(volatile int *p, int v)
{
_ATOMIC_STORE(int, p, v, memory_order_relaxed, false);
}
static inline void
atomic_store_rel_int(volatile int *p, int v)
{
_ATOMIC_STORE(int, p, v, memory_order_release, true);
}
static inline void
atomic_store_rel_32(volatile uint32_t *p, uint32_t v)
{
_ATOMIC_STORE(uint_fast32_t, p, v, memory_order_release, true);
}
static inline void
atomic_store_rel_long(volatile long *p, long v)
{
_ATOMIC_STORE(long, p, v, memory_order_release, true);
}
static inline void
atomic_store_rel_ptr(volatile uintptr_t *p, uintptr_t v)
{
/* XXX IPL32 ok with this? */
_ATOMIC_STORE(uintptr_t, p, v, memory_order_release, true);
}
/*
* Add
*/
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
#define _ATOMIC_ADD(T, p, v, mo) \
std::atomic_##T *q = \
reinterpret_cast<std::atomic_##T *>(const_cast<T *>(p)); \
q->fetch_add(v, std::mo)
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
#define _ATOMIC_ADD(T, p, v, mo) \
atomic_##T *q = (atomic_##T *)RTEMS_DEVOLATILE(T *, p); \
atomic_fetch_add_explicit(q, v, mo)
#else
#define _ATOMIC_ADD(T, p, v, mo) \
rtems_interrupt_level level; \
rtems_interrupt_disable(level); \
*p += v; \
rtems_interrupt_enable(level)
#endif
static inline void
atomic_add_int(volatile int *p, int v)
{
_ATOMIC_ADD(int, p, v, memory_order_seq_cst);
}
static inline void
atomic_add_acq_int(volatile int *p, int v)
{
_ATOMIC_ADD(int, p, v, memory_order_acquire);
}
static inline void
atomic_add_rel_int(volatile int *p, int v)
{
_ATOMIC_ADD(int, p, v, memory_order_release);
}
static inline void
atomic_add_32(volatile uint32_t *p, uint32_t v)
{
_ATOMIC_ADD(uint_fast32_t, p, v, memory_order_seq_cst);
}
static inline void
atomic_add_acq_32(volatile uint32_t *p, uint32_t v)
{
_ATOMIC_ADD(uint_fast32_t, p, v, memory_order_acquire);
}
static inline void
atomic_add_rel_32(volatile uint32_t *p, uint32_t v)
{
_ATOMIC_ADD(uint_fast32_t, p, v, memory_order_release);
}
static inline void
atomic_add_long(volatile long *p, long v)
{
_ATOMIC_ADD(long, p, v, memory_order_seq_cst);
}
static inline void
atomic_add_acq_long(volatile long *p, long v)
{
_ATOMIC_ADD(long, p, v, memory_order_acquire);
}
static inline void
atomic_add_rel_long(volatile long *p, long v)
{
_ATOMIC_ADD(long, p, v, memory_order_release);
}
/*
* Subtract
*/
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
#define _ATOMIC_SUB(T, p, v, mo) \
std::atomic_##T *q = \
reinterpret_cast<std::atomic_##T *>(const_cast<T *>(p)); \
q->fetch_sub(v, std::mo)
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
#define _ATOMIC_SUB(T, p, v, mo) \
atomic_##T *q = (atomic_##T *)RTEMS_DEVOLATILE(T *, p); \
atomic_fetch_sub_explicit(q, v, mo)
#else
#define _ATOMIC_SUB(T, p, v, mo) \
rtems_interrupt_level level; \
rtems_interrupt_disable(level); \
*p -= v; \
rtems_interrupt_enable(level)
#endif
static inline void
atomic_subtract_int(volatile int *p, int v)
{
_ATOMIC_SUB(int, p, v, memory_order_seq_cst);
}
static inline void
atomic_subtract_acq_int(volatile int *p, int v)
{
_ATOMIC_SUB(int, p, v, memory_order_acquire);
}
static inline void
atomic_subtract_rel_int(volatile int *p, int v)
{
_ATOMIC_SUB(int, p, v, memory_order_release);
}
static inline void
atomic_subtract_32(volatile uint32_t *p, uint32_t v)
{
_ATOMIC_SUB(uint_fast32_t, p, v, memory_order_seq_cst);
}
static inline void
atomic_subtract_acq_32(volatile uint32_t *p, uint32_t v)
{
_ATOMIC_SUB(uint_fast32_t, p, v, memory_order_acquire);
}
static inline void
atomic_subtract_rel_32(volatile uint32_t *p, uint32_t v)
{
_ATOMIC_SUB(uint_fast32_t, p, v, memory_order_release);
}
static inline void
atomic_subtract_long(volatile long *p, long v)
{
_ATOMIC_SUB(long, p, v, memory_order_seq_cst);
}
static inline void
atomic_subtract_acq_long(volatile long *p, long v)
{
_ATOMIC_SUB(long, p, v, memory_order_acquire);
}
static inline void
atomic_subtract_rel_long(volatile long *p, long v)
{
_ATOMIC_SUB(long, p, v, memory_order_release);
}
/*
* Set
*/
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
#define _ATOMIC_SET(T, p, v, mo) \
std::atomic_##T *q = \
reinterpret_cast<std::atomic_##T *>(const_cast<T *>(p)); \
q->fetch_or(v, std::mo)
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
#define _ATOMIC_SET(T, p, v, mo) \
atomic_##T *q = (atomic_##T *)RTEMS_DEVOLATILE(T *, p); \
atomic_fetch_or_explicit(q, v, mo)
#else
#define _ATOMIC_SET(T, p, v, mo) \
rtems_interrupt_level level; \
rtems_interrupt_disable(level); \
*p |= v; \
rtems_interrupt_enable(level)
#endif
static inline void
atomic_set_int(volatile int *p, int v)
{
_ATOMIC_SET(int, p, v, memory_order_seq_cst);
}
static inline void
atomic_set_acq_int(volatile int *p, int v)
{
_ATOMIC_SET(int, p, v, memory_order_acquire);
}
static inline void
atomic_set_rel_int(volatile int *p, int v)
{
_ATOMIC_SET(int, p, v, memory_order_release);
}
static inline void
atomic_set_32(volatile uint32_t *p, uint32_t v)
{
_ATOMIC_SET(uint_fast32_t, p, v, memory_order_seq_cst);
}
static inline void
atomic_set_acq_32(volatile uint32_t *p, uint32_t v)
{
_ATOMIC_SET(uint_fast32_t, p, v, memory_order_acquire);
}
static inline void
atomic_set_rel_32(volatile uint32_t *p, uint32_t v)
{
_ATOMIC_SET(uint_fast32_t, p, v, memory_order_release);
}
static inline void
atomic_set_long(volatile long *p, long v)
{
_ATOMIC_SET(long, p, v, memory_order_seq_cst);
}
static inline void
atomic_set_acq_long(volatile long *p, long v)
{
_ATOMIC_SET(long, p, v, memory_order_acquire);
}
static inline void
atomic_set_rel_long(volatile long *p, long v)
{
_ATOMIC_SET(long, p, v, memory_order_release);
}
/*
* Clear
*/
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
#define _ATOMIC_CLEAR(T, p, v, mo) \
std::atomic_##T *q = \
reinterpret_cast<std::atomic_##T *>(const_cast<T *>(p)); \
q->fetch_and(~v, std::mo)
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
#define _ATOMIC_CLEAR(T, p, v, mo) \
atomic_##T *q = (atomic_##T *)RTEMS_DEVOLATILE(T *, p); \
atomic_fetch_and_explicit(q, ~v, mo)
#else
#define _ATOMIC_CLEAR(T, p, v, mo) \
rtems_interrupt_level level; \
rtems_interrupt_disable(level); \
*p &= ~v; \
rtems_interrupt_enable(level)
#endif
static inline void
atomic_clear_int(volatile int *p, int v)
{
_ATOMIC_CLEAR(int, p, v, memory_order_seq_cst);
}
static inline void
atomic_clear_acq_int(volatile int *p, int v)
{
_ATOMIC_CLEAR(int, p, v, memory_order_acquire);
}
static inline void
atomic_clear_rel_int(volatile int *p, int v)
{
_ATOMIC_CLEAR(int, p, v, memory_order_release);
}
static inline void
atomic_clear_32(volatile uint32_t *p, uint32_t v)
{
_ATOMIC_CLEAR(uint_fast32_t, p, v, memory_order_seq_cst);
}
static inline void
atomic_clear_acq_32(volatile uint32_t *p, uint32_t v)
{
_ATOMIC_CLEAR(uint_fast32_t, p, v, memory_order_acquire);
}
static inline void
atomic_clear_rel_32(volatile uint32_t *p, uint32_t v)
{
_ATOMIC_CLEAR(uint_fast32_t, p, v, memory_order_release);
}
static inline void
atomic_clear_long(volatile long *p, long v)
{
_ATOMIC_CLEAR(long, p, v, memory_order_release);
}
static inline void
atomic_clear_acq_long(volatile long *p, long v)
{
_ATOMIC_CLEAR(long, p, v, memory_order_acquire);
}
static inline void
atomic_clear_rel_long(volatile long *p, long v)
{
_ATOMIC_CLEAR(long, p, v, memory_order_release);
}
/*
* Compare and set
*/
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
#define _ATOMIC_CMPSET(T, p, cmp, set, mo) \
std::atomic_##T *q = \
reinterpret_cast<std::atomic_##T *>(const_cast<T *>(p)); \
rv = q->compare_exchange_strong(cmp, set, \
std::mo, std::memory_order_relaxed)
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
#define _ATOMIC_CMPSET(T, p, cmp, set, mo) \
atomic_##T *q = (atomic_##T *)RTEMS_DEVOLATILE(T *, p); \
atomic_compare_exchange_strong_explicit(q, &cmp, set, \
mo, memory_order_relaxed)
#else
#define _ATOMIC_CMPSET(T, p, cmp, set, mo) \
rtems_interrupt_level level; \
rtems_interrupt_disable(level); \
rv = *p == cmp; \
if (rv) { \
*p = set; \
} \
rtems_interrupt_enable(level);
#endif
static inline int
atomic_cmpset_int(volatile int *p, int cmp, int set)
{
int rv;
_ATOMIC_CMPSET(int, p, cmp, set, memory_order_seq_cst);
return (rv);
}
static inline int
atomic_cmpset_acq_int(volatile int *p, int cmp, int set)
{
int rv;
_ATOMIC_CMPSET(int, p, cmp, set, memory_order_acquire);
return (rv);
}
static inline int
atomic_cmpset_rel_int(volatile int *p, int cmp, int set)
{
int rv;
_ATOMIC_CMPSET(int, p, cmp, set, memory_order_release);
return (rv);
}
static inline int
atomic_cmpset_32(volatile uint32_t *p, uint32_t cmp, uint32_t set)
{
int rv;
_ATOMIC_CMPSET(uint_least32_t, p, cmp, set, memory_order_seq_cst);
return (rv);
}
static inline int
atomic_cmpset_acq_32(volatile uint32_t *p, uint32_t cmp, uint32_t set)
{
int rv;
_ATOMIC_CMPSET(uint_least32_t, p, cmp, set, memory_order_acquire);
return (rv);
}
static inline int
atomic_cmpset_rel_32(volatile uint32_t *p, uint32_t cmp, uint32_t set)
{
int rv;
_ATOMIC_CMPSET(uint_least32_t, p, cmp, set, memory_order_release);
return (rv);
}
static inline int
atomic_cmpset_64(volatile uint64_t *p, uint64_t cmp, uint64_t set)
{
int rv;
_ATOMIC_CMPSET(uint_least64_t, p, cmp, set, memory_order_seq_cst);
return (rv);
}
static inline int
atomic_cmpset_acq_64(volatile uint64_t *p, uint64_t cmp, uint64_t set)
{
int rv;
_ATOMIC_CMPSET(uint_least64_t, p, cmp, set, memory_order_acquire);
return (rv);
}
static inline int
atomic_cmpset_rel_64(volatile uint64_t *p, uint64_t cmp, uint64_t set)
{
int rv;
_ATOMIC_CMPSET(uint_least64_t, p, cmp, set, memory_order_release);
return (rv);
}
static inline int
atomic_cmpset_long(volatile long *p, long cmp, long set)
{
int rv;
_ATOMIC_CMPSET(long, p, cmp, set, memory_order_seq_cst);
return (rv);
}
static inline int
atomic_cmpset_acq_long(volatile long *p, long cmp, long set)
{
int rv;
_ATOMIC_CMPSET(long, p, cmp, set, memory_order_acquire);
return (rv);
}
static inline int
atomic_cmpset_rel_long(volatile long *p, long cmp, long set)
{
int rv;
_ATOMIC_CMPSET(long, p, cmp, set, memory_order_release);
return (rv);
}
static inline int
atomic_cmpset_ptr(volatile uintptr_t *p, uintptr_t cmp, uintptr_t set)
{
int rv;
_ATOMIC_CMPSET(uintptr_t, p, cmp, set, memory_order_seq_cst);
return (rv);
}
static inline int
atomic_cmpset_acq_ptr(volatile uintptr_t *p, uintptr_t cmp, uintptr_t set)
{
int rv;
_ATOMIC_CMPSET(uintptr_t, p, cmp, set, memory_order_acquire);
return (rv);
}
static inline int
atomic_cmpset_rel_ptr(volatile uintptr_t *p, uintptr_t cmp, uintptr_t set)
{
int rv;
_ATOMIC_CMPSET(uintptr_t, p, cmp, set, memory_order_release);
return (rv);
}
/*
* Fetch compare and set
*/
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
#define _ATOMIC_FCMPSET(T, p, cmp, set, mo) \
std::atomic_##T *q = \
reinterpret_cast<std::atomic_##T *>(const_cast<T *>(p)); \
rv = q->compare_exchange_strong(*cmp, set, \
std::mo, std::memory_order_relaxed)
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
#define _ATOMIC_FCMPSET(T, p, cmp, set, mo) \
atomic_##T *q = (atomic_##T *)RTEMS_DEVOLATILE(T *, p); \
atomic_compare_exchange_strong_explicit(q, cmp, set, \
mo, memory_order_relaxed)
#else
#define _ATOMIC_FCMPSET(T, p, cmp, set, mo) \
rtems_interrupt_level level; \
T actual; \
rtems_interrupt_disable(level); \
actual = *p; \
rv = actual == *cmp; \
*cmp = actual; \
if (rv) { \
*p = set; \
} \
rtems_interrupt_enable(level);
#endif
static inline int
atomic_fcmpset_int(volatile int *p, int *cmp, int set)
{
int rv;
_ATOMIC_FCMPSET(int, p, cmp, set, memory_order_seq_cst);
return (rv);
}
static inline int
atomic_fcmpset_acq_int(volatile int *p, int *cmp, int set)
{
int rv;
_ATOMIC_FCMPSET(int, p, cmp, set, memory_order_acquire);
return (rv);
}
static inline int
atomic_fcmpset_rel_int(volatile int *p, int *cmp, int set)
{
int rv;
_ATOMIC_FCMPSET(int, p, cmp, set, memory_order_release);
return (rv);
}
static inline int
atomic_fcmpset_64(volatile uint64_t *p, uint64_t *cmp, uint64_t set)
{
int rv;
_ATOMIC_FCMPSET(uint_least64_t, p, cmp, set, memory_order_seq_cst);
return (rv);
}
static inline int
atomic_fcmpset_acq_64(volatile uint64_t *p, uint64_t *cmp, uint64_t set)
{
int rv;
_ATOMIC_FCMPSET(uint_least64_t, p, cmp, set, memory_order_acquire);
return (rv);
}
static inline int
atomic_fcmpset_rel_64(volatile uint64_t *p, uint64_t *cmp, uint64_t set)
{
int rv;
_ATOMIC_FCMPSET(uint_least64_t, p, cmp, set, memory_order_release);
return (rv);
}
/* XXX Is IPL32 ok with the .*_ptr versions? */
static inline int
atomic_fcmpset_ptr(volatile uintptr_t *p, uintptr_t *cmp, uintptr_t set)
{
int rv;
_ATOMIC_FCMPSET(uintptr_t, p, cmp, set, memory_order_seq_cst);
return (rv);
}
static inline int
atomic_fcmpset_acq_ptr(volatile uintptr_t *p, uintptr_t *cmp, uintptr_t set)
{
int rv;
_ATOMIC_FCMPSET(uintptr_t, p, cmp, set, memory_order_acquire);
return (rv);
}
static inline int
atomic_fcmpset_rel_ptr(volatile uintptr_t *p, uintptr_t *cmp, uintptr_t set)
{
int rv;
_ATOMIC_FCMPSET(uintptr_t, p, cmp, set, memory_order_release);
return (rv);
}
/*
* Fetch add
*/
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
#define _ATOMIC_FETCHADD(T, p, v, mo) \
std::atomic_##T *q = \
reinterpret_cast<std::atomic_##T *>(const_cast<T *>(p)); \
tmp = q->fetch_add(v, std::mo)
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
#define _ATOMIC_FETCHADD(T, p, v, mo) \
atomic_##T *q = (atomic_##T *)RTEMS_DEVOLATILE(T *, p); \
tmp = atomic_fetch_add_explicit(q, v, mo)
#else
#define _ATOMIC_FETCHADD(T, p, v, mo) \
rtems_interrupt_level level; \
rtems_interrupt_disable(level); \
tmp = *p; \
*p += v; \
rtems_interrupt_enable(level);
#endif
static inline int
atomic_fetchadd_int(volatile int *p, int v)
{
int tmp;
_ATOMIC_FETCHADD(int, p, v, memory_order_seq_cst);
return (tmp);
}
static inline uint32_t
atomic_fetchadd_32(volatile uint32_t *p, uint32_t v)
{
uint32_t tmp;
_ATOMIC_FETCHADD(uint_fast32_t, p, v, memory_order_seq_cst);
return (tmp);
}
static inline uint64_t
atomic_fetchadd_64(volatile uint64_t *p, uint64_t v)
{
uint64_t tmp;
_ATOMIC_FETCHADD(uint_fast64_t, p, v, memory_order_seq_cst);
return (tmp);
}
static inline long
atomic_fetchadd_long(volatile long *p, long v)
{
long tmp;
_ATOMIC_FETCHADD(long, p, v, memory_order_seq_cst);
return (tmp);
}
/*
* Read and clear
*/
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
#define _ATOMIC_READANDCLEAR(T, p, mo) \
std::atomic_##T *q = \
reinterpret_cast<std::atomic_##T *>(const_cast<T *>(p)); \
tmp = q->exchange(0, std::mo)
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
#define _ATOMIC_READANDCLEAR(T, p, mo) \
atomic_##T *q = (atomic_##T *)RTEMS_DEVOLATILE(T *, p); \
tmp = atomic_exchange_explicit(q, 0, mo)
#else
#define _ATOMIC_READANDCLEAR(T, p, mo) \
rtems_interrupt_level level; \
rtems_interrupt_disable(level); \
tmp = *p; \
*p = 0; \
rtems_interrupt_enable(level);
#endif
static inline int
atomic_readandclear_int(volatile int *p)
{
int tmp;
_ATOMIC_READANDCLEAR(int, p, memory_order_seq_cst);
return (tmp);
}
static inline uint32_t
atomic_readandclear_32(volatile uint32_t *p)
{
uint32_t tmp;
_ATOMIC_READANDCLEAR(uint_least32_t, p, memory_order_seq_cst);
return (tmp);
}
static inline long
atomic_readandclear_long(volatile long *p)
{
long tmp;
_ATOMIC_READANDCLEAR(long, p, memory_order_seq_cst);
return (tmp);
}
/*
* Thread fence
*/
static inline void
atomic_thread_fence_acq(void)
{
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
std::atomic_thread_fence(std::memory_order_acquire);
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
atomic_thread_fence(memory_order_acquire);
#else
RTEMS_COMPILER_MEMORY_BARRIER();
#endif
}
static inline void
atomic_thread_fence_rel(void)
{
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
std::atomic_thread_fence(std::memory_order_release);
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
atomic_thread_fence(memory_order_release);
#else
RTEMS_COMPILER_MEMORY_BARRIER();
#endif
}
static inline void
atomic_thread_fence_acq_rel(void)
{
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
std::atomic_thread_fence(std::memory_order_acq_rel);
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
atomic_thread_fence(memory_order_acq_rel);
#else
RTEMS_COMPILER_MEMORY_BARRIER();
#endif
}
static inline void
atomic_thread_fence_seq_cst(void)
{
#if defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_ATOMIC)
std::atomic_thread_fence(std::memory_order_seq_cst);
#elif defined(_RTEMS_BSD_MACHINE_ATOMIC_USE_STDATOMIC)
atomic_thread_fence(memory_order_seq_cst);
#else
RTEMS_COMPILER_MEMORY_BARRIER();
#endif
}
#endif /* _RTEMS_BSD_MACHINE_ATOMIC_H_ */