rtems-libbsd/rtemsbsd/rtems/rtems-bsd-cam.c
2015-03-26 13:53:24 +01:00

505 lines
11 KiB
C

/**
* @file
*
* @ingroup rtems_bsd_rtems
*
* @brief TODO.
*/
/*
* Copyright (c) 2009-2012 embedded brains GmbH.
* All rights reserved.
*
* embedded brains GmbH
* Obere Lagerstr. 30
* 82178 Puchheim
* Germany
* <rtems@embedded-brains.de>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <machine/rtems-bsd-kernel-space.h>
#include <machine/rtems-bsd-support.h>
#include <rtems/bsd/sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <rtems/bsd/sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <rtems/media.h>
#include <rtems/libio.h>
#include <rtems/diskdevs.h>
#define BSD_CAM_DEVQ_DUMMY ((struct cam_devq *) 0xdeadbeef)
#define BSD_SCSI_TAG 0
#define BSD_SCSI_RETRIES 4
#define BSD_SCSI_TIMEOUT (60 * 1000)
#define BSD_SCSI_MIN_COMMAND_SIZE 10
MALLOC_DEFINE(M_CAMSIM, "CAM SIM", "CAM SIM buffers");
static void
rtems_bsd_sim_set_state(struct cam_sim *sim, enum bsd_sim_state state)
{
sim->state = state;
}
static void
rtems_bsd_sim_set_state_and_notify(struct cam_sim *sim, enum bsd_sim_state state)
{
sim->state = state;
cv_broadcast(&sim->state_changed);
}
static void
rtems_bsd_sim_wait_for_state(struct cam_sim *sim, enum bsd_sim_state state)
{
while (sim->state != state) {
cv_wait(&sim->state_changed, sim->mtx);
}
}
static void
rtems_bsd_sim_wait_for_state_and_cancel_ccb(struct cam_sim *sim, enum bsd_sim_state state)
{
while (sim->state != state) {
if (sim->state != BSD_SIM_BUSY) {
cv_wait(&sim->state_changed, sim->mtx);
} else {
sim->ccb.ccb_h.status = CAM_SEL_TIMEOUT;
(*sim->ccb.ccb_h.cbfcnp)(NULL, &sim->ccb);
}
}
}
static void
rtems_bsd_ccb_callback(struct cam_periph *periph, union ccb *ccb)
{
struct cam_sim *sim = ccb->ccb_h.sim;
BSD_ASSERT(periph == NULL && sim->state == BSD_SIM_INIT_BUSY);
rtems_bsd_sim_set_state_and_notify(sim, BSD_SIM_INIT_READY);
}
static rtems_status_code
rtems_bsd_ccb_action(union ccb *ccb)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
struct cam_sim *sim = ccb->ccb_h.sim;
mtx_lock(sim->mtx);
BSD_ASSERT(sim->state == BSD_SIM_INIT);
rtems_bsd_sim_set_state(sim, BSD_SIM_INIT_BUSY);
(*sim->sim_action)(sim, ccb);
rtems_bsd_sim_wait_for_state(sim, BSD_SIM_INIT_READY);
if (ccb->ccb_h.status != CAM_REQ_CMP) {
sc = RTEMS_IO_ERROR;
}
rtems_bsd_sim_set_state(sim, BSD_SIM_INIT);
mtx_unlock(sim->mtx);
return sc;
}
static rtems_status_code
rtems_bsd_scsi_inquiry(union ccb *ccb, struct scsi_inquiry_data *inq_data)
{
memset(inq_data, 0, sizeof(*inq_data));
scsi_inquiry(
&ccb->csio,
BSD_SCSI_RETRIES,
rtems_bsd_ccb_callback,
BSD_SCSI_TAG,
(u_int8_t *) inq_data,
SHORT_INQUIRY_LENGTH,
FALSE,
0,
SSD_MIN_SIZE,
BSD_SCSI_TIMEOUT
);
return rtems_bsd_ccb_action(ccb);
}
static rtems_status_code
rtems_bsd_scsi_test_unit_ready(union ccb *ccb)
{
scsi_test_unit_ready(
&ccb->csio,
BSD_SCSI_RETRIES,
rtems_bsd_ccb_callback,
BSD_SCSI_TAG,
SSD_FULL_SIZE,
BSD_SCSI_TIMEOUT
);
return rtems_bsd_ccb_action(ccb);
}
static rtems_status_code
rtems_bsd_scsi_read_capacity(union ccb *ccb, uint32_t *block_count, uint32_t *block_size)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
struct scsi_read_capacity_data rdcap;
memset(&rdcap, 0, sizeof(rdcap));
scsi_read_capacity(
&ccb->csio,
BSD_SCSI_RETRIES,
rtems_bsd_ccb_callback,
BSD_SCSI_TAG,
&rdcap,
SSD_FULL_SIZE,
BSD_SCSI_TIMEOUT
);
sc = rtems_bsd_ccb_action(ccb);
if (sc != RTEMS_SUCCESSFUL) {
return RTEMS_IO_ERROR;
}
*block_size = scsi_4btoul(rdcap.length);
*block_count = scsi_4btoul(rdcap.addr) + 1;
return RTEMS_SUCCESSFUL;
}
static void
rtems_bsd_csio_callback(struct cam_periph *periph, union ccb *ccb)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool done = false;
struct cam_sim *sim = ccb->ccb_h.sim;
BSD_ASSERT(periph == NULL && sim->state == BSD_SIM_BUSY);
if (ccb->ccb_h.status == CAM_REQ_CMP) {
rtems_blkdev_sg_buffer *sg = ccb->csio.sg_current;
if (sg != ccb->csio.sg_end) {
scsi_read_write(
&ccb->csio,
BSD_SCSI_RETRIES,
rtems_bsd_csio_callback,
BSD_SCSI_TAG,
ccb->csio.readop,
0,
BSD_SCSI_MIN_COMMAND_SIZE,
sg->block,
sg->length / 512, /* FIXME */
sg->buffer,
sg->length,
SSD_FULL_SIZE,
BSD_SCSI_TIMEOUT
);
ccb->csio.sg_current = sg + 1;
(*sim->sim_action)(sim, ccb);
} else {
done = true;
}
} else if (ccb->ccb_h.status == CAM_SEL_TIMEOUT) {
sc = RTEMS_UNSATISFIED;
done = true;
} else {
sc = RTEMS_IO_ERROR;
done = true;
}
if (done) {
rtems_blkdev_request_done(ccb->csio.req, sc);
rtems_bsd_sim_set_state_and_notify(sim, BSD_SIM_IDLE);
}
}
static int rtems_bsd_sim_disk_read_write(struct cam_sim *sim, rtems_blkdev_request *req)
{
mtx_lock(sim->mtx);
rtems_bsd_sim_wait_for_state(sim, BSD_SIM_IDLE);
rtems_bsd_sim_set_state(sim, BSD_SIM_BUSY);
switch (req->req) {
case RTEMS_BLKDEV_REQ_READ:
sim->ccb.csio.readop = TRUE;
break;
case RTEMS_BLKDEV_REQ_WRITE:
sim->ccb.csio.readop = FALSE;
break;
default:
mtx_unlock(sim->mtx);
return -1;
}
sim->ccb.csio.sg_current = req->bufs;
sim->ccb.csio.sg_end = req->bufs + req->bufnum;
sim->ccb.csio.req = req;
sim->ccb.ccb_h.status = CAM_REQ_CMP;
rtems_bsd_csio_callback(NULL, &sim->ccb);
mtx_unlock(sim->mtx);
return 0;
}
static int rtems_bsd_sim_disk_ioctl(rtems_disk_device *dd, uint32_t req, void *arg)
{
struct cam_sim *sim = rtems_disk_get_driver_data(dd);
if (req == RTEMS_BLKIO_REQUEST) {
rtems_blkdev_request *r = arg;
return rtems_bsd_sim_disk_read_write(sim, r);
} else if (req == RTEMS_BLKIO_DELETED) {
mtx_lock(sim->mtx);
free(sim->disk, M_RTEMS_HEAP);
sim->disk = NULL;
rtems_bsd_sim_set_state_and_notify(sim, BSD_SIM_DELETED);
mtx_unlock(sim->mtx);
return 0;
} else {
return rtems_blkdev_ioctl(dd, req, arg);
}
}
static void
rtems_bsd_sim_disk_initialized(struct cam_sim *sim, char *disk)
{
mtx_lock(sim->mtx);
sim->disk = disk;
rtems_bsd_sim_set_state_and_notify(sim, BSD_SIM_IDLE);
mtx_unlock(sim->mtx);
}
static rtems_status_code
rtems_bsd_sim_attach_worker(rtems_media_state state, const char *src, char **dest, void *arg)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
struct cam_sim *sim = arg;
char *disk = NULL;
if (state == RTEMS_MEDIA_STATE_READY) {
unsigned retries = 0;
struct scsi_inquiry_data inq_data;
uint32_t block_count = 0;
uint32_t block_size = 0;
disk = rtems_media_create_path("/dev", src, cam_sim_unit(sim));
if (disk == NULL) {
BSD_PRINTF("OOPS: create path failed\n");
goto error;
}
sc = rtems_bsd_scsi_inquiry(&sim->ccb, &inq_data);
if (sc == RTEMS_SUCCESSFUL) {
scsi_print_inquiry(&inq_data);
} else {
BSD_PRINTF("OOPS: inquiry failed\n");
}
for (retries = 0; retries <= 3; ++retries) {
sc = rtems_bsd_scsi_test_unit_ready(&sim->ccb);
if (sc == RTEMS_SUCCESSFUL) {
break;
}
}
if (sc != RTEMS_SUCCESSFUL) {
BSD_PRINTF("OOPS: test unit ready failed\n");
}
for (retries = 0; retries <= 3; ++retries) {
sc = rtems_bsd_scsi_read_capacity(&sim->ccb, &block_count, &block_size);
if (sc == RTEMS_SUCCESSFUL) {
break;
}
}
if (sc != RTEMS_SUCCESSFUL) {
BSD_PRINTF("OOPS: read capacity failed\n");
goto error;
}
BSD_PRINTF("read capacity: block count %u, block size %u\n", block_count, block_size);
sc = rtems_blkdev_create(disk, block_size, block_count, rtems_bsd_sim_disk_ioctl, sim);
if (sc != RTEMS_SUCCESSFUL) {
goto error;
}
/* FIXME */
#if 0
rtems_disk_device *dd = rtems_disk_obtain(dev);
dd->block_size *= 64;
rtems_disk_release(dd);
#endif
rtems_bsd_sim_disk_initialized(sim, disk);
*dest = strdup(disk, M_RTEMS_HEAP);
}
return RTEMS_SUCCESSFUL;
error:
free(disk, M_RTEMS_HEAP);
rtems_bsd_sim_disk_initialized(sim, NULL);
return RTEMS_IO_ERROR;
}
struct cam_sim *
cam_sim_alloc(
sim_action_func sim_action,
sim_poll_func sim_poll,
const char *sim_name,
void *softc,
u_int32_t unit,
struct mtx *mtx,
int max_dev_transactions,
int max_tagged_dev_transactions,
struct cam_devq *queue
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
struct cam_sim *sim = NULL;
if (mtx == NULL) {
return NULL;
}
sim = malloc(sizeof(*sim), M_CAMSIM, M_NOWAIT | M_ZERO);
if (sim == NULL) {
return NULL;
}
sim->sim_action = sim_action;
sim->sim_poll = sim_poll;
sim->sim_name = sim_name;
sim->softc = softc;
sim->mtx = mtx;
sim->unit_number = unit;
sim->ccb.ccb_h.sim = sim;
cv_init(&sim->state_changed, "SIM state changed");
sc = rtems_media_server_disk_attach(sim_name, rtems_bsd_sim_attach_worker, sim);
BSD_ASSERT_SC(sc);
return sim;
}
void
cam_sim_free(struct cam_sim *sim, int free_devq)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
/*
* The umass_detach() cancels all transfers via
* usbd_transfer_unsetup(). This prevents also the start of new
* transfers since the transfer descriptors will be removed. Started
* transfers that are not in the transferring state will be canceled
* and the callbacks will be not called. Thus it is necessary to do
* this here if we are in the BUSY state.
*/
rtems_bsd_sim_wait_for_state_and_cancel_ccb(sim, BSD_SIM_IDLE);
if (sim->disk != NULL) {
sc = rtems_media_server_disk_detach(sim->disk);
BSD_ASSERT_SC(sc);
rtems_bsd_sim_wait_for_state(sim, BSD_SIM_DELETED);
}
cv_destroy(&sim->state_changed);
free(sim, M_CAMSIM);
}
struct cam_devq *
cam_simq_alloc(u_int32_t max_sim_transactions)
{
return BSD_CAM_DEVQ_DUMMY;
}
void
cam_simq_free(struct cam_devq *devq)
{
BSD_ASSERT(devq == BSD_CAM_DEVQ_DUMMY);
}
void
xpt_done(union ccb *done_ccb)
{
(*done_ccb->ccb_h.cbfcnp)(NULL, done_ccb);
}
int32_t
xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
{
/*
* We ignore this bus stuff completely. This is easier than removing
* the calls from "umass.c".
*/
return CAM_SUCCESS;
}
int32_t
xpt_bus_deregister(path_id_t pathid)
{
/*
* We ignore this bus stuff completely. This is easier than removing
* the calls from "umass.c".
*/
return CAM_REQ_CMP;
}