2017-10-23 09:24:06 +02:00

496 lines
10 KiB
C

#include <machine/rtems-bsd-kernel-space.h>
#include <rtems/bsd/local/opt_dpaa.h>
/*
* Copyright (c) 2016 embedded brains GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <machine/rtems-bsd-kernel-space.h>
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/time.h>
#include <sys/queue.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <libfdt.h>
#include <rtems/bsd.h>
#include <bsp/fdt.h>
#include <linux/of_mdio.h>
#define MDIO_LOCK() mtx_lock(&mdio.mutex)
#define MDIO_UNLOCK() mtx_unlock(&mdio.mutex)
static struct {
SLIST_HEAD(, mdio_bus) instances;
struct mtx mutex;
} mdio = {
.instances = SLIST_HEAD_INITIALIZER(mdio.instances)
};
MTX_SYSINIT(mdio_mutex, &mdio.mutex, "MDIO", MTX_DEF);
int
phy_read(struct phy_device *phy_dev, int reg)
{
struct mdio_bus *mdio_dev;
int val;
mdio_dev = phy_dev->mdio.bus;
MDIO_LOCK();
val = (*mdio_dev->read)(mdio_dev, phy_dev->mdio.addr,
reg | phy_dev->mdio.is_c45);
MDIO_UNLOCK();
return (val);
}
int
phy_write(struct phy_device *phy_dev, int reg, int val)
{
struct mdio_bus *mdio_dev;
int err;
mdio_dev = phy_dev->mdio.bus;
MDIO_LOCK();
err = (*mdio_dev->write)(mdio_dev, phy_dev->mdio.addr,
reg | phy_dev->mdio.is_c45, val);
MDIO_UNLOCK();
return (err);
}
static uint64_t
fdt_get_address(const void *fdt, int node)
{
uint64_t addr;
int nodes[16];
size_t i;
int ac;
i = 0;
do {
nodes[i] = node;
++i;
node = fdt_parent_offset(fdt, node);
} while (node >= 0 && i < nitems(nodes));
if (node >= 0) {
return (0);
}
ac = 1;
addr = 0;
while (i > 0) {
const fdt32_t *p;
int len;
p = fdt_getprop(fdt, nodes[i - 1], "reg", &len);
if (p != NULL) {
if (ac == 1 && len >= 4) {
addr += fdt32_to_cpu(p[0]);
} else if (ac == 2 && len >= 8) {
addr += fdt32_to_cpu(p[1]);
addr += (uint64_t)fdt32_to_cpu(p[0]) << 32;
} else {
return (0);
}
}
p = fdt_getprop(fdt, nodes[i - 1], "#address-cells", &len);
if (p != NULL) {
if (len != 4) {
return (0);
}
ac = (int)fdt32_to_cpu(p[0]);
if (ac != 1 && ac != 2) {
return (0);
}
}
--i;
}
return (addr);
}
struct fman_mdio_regs {
uint32_t reserved[12];
uint32_t mdio_cfg;
uint32_t mdio_ctrl;
uint32_t mdio_data;
uint32_t mdio_addr;
};
#define MDIO_CFG_BSY (1U << 31)
#define MDIO_CFG_ENC45 (1U << 6)
#define MDIO_CFG_RD_ERR (1U << 1)
#define MDIO_CTRL_READ (1U << 15)
#define MDIO_CTRL_REG_ADDR(x) ((x) & 0x1fU)
#define MDIO_CTRL_PHY_ADDR(x) (((x) & 0x1fU) << 5)
struct fman_mdio_bus {
struct mdio_bus base;
volatile struct fman_mdio_regs *regs;
};
static int
fman_mdio_wait(volatile struct fman_mdio_regs *regs)
{
struct bintime start;
rtems_bsd_binuptime(&start);
while ((regs->mdio_cfg & MDIO_CFG_BSY) != 0) {
struct bintime now;
rtems_bsd_binuptime(&now);
if (bttosbt(now) - bttosbt(start) > 100 * SBT_1US) {
break;
}
}
/* Check again, to take thread pre-emption into account */
if ((regs->mdio_cfg & MDIO_CFG_BSY) != 0) {
return (EIO);
}
return (0);
}
static int
fman_mdio_setup(volatile struct fman_mdio_regs *regs, int addr, int reg,
uint32_t *mdio_ctrl_p)
{
uint32_t mdio_cfg;
uint32_t mdio_ctrl;
uint32_t reg_addr;
int err;
err = fman_mdio_wait(regs);
if (err != 0) {
return (err);
}
mdio_cfg = regs->mdio_cfg;
if ((reg & MII_ADDR_C45) != 0) {
reg_addr = (uint32_t)(reg >> 16);
mdio_cfg |= MDIO_CFG_ENC45;
} else {
reg_addr = (uint32_t)reg;
mdio_cfg &= ~MDIO_CFG_ENC45;
}
regs->mdio_cfg = mdio_cfg;
mdio_ctrl = MDIO_CTRL_PHY_ADDR(addr) | MDIO_CTRL_REG_ADDR(reg_addr);
regs->mdio_ctrl = mdio_ctrl;
if ((reg & MII_ADDR_C45) != 0) {
regs->mdio_addr = (uint32_t)(reg & 0xffff);
err = fman_mdio_wait(regs);
if (err != 0) {
return (err);
}
}
*mdio_ctrl_p = mdio_ctrl;
return (0);
}
static int
fman_mdio_read(struct mdio_bus *base, int addr, int reg)
{
struct fman_mdio_bus *fm;
volatile struct fman_mdio_regs *regs;
uint32_t mdio_ctrl;
int val;
int err;
fm = (struct fman_mdio_bus *)base;
regs = fm->regs;
err = fman_mdio_setup(regs, addr, reg, &mdio_ctrl);
if (err != 0) {
return (-1);
}
mdio_ctrl |= MDIO_CTRL_READ;
regs->mdio_ctrl = mdio_ctrl;
err = fman_mdio_wait(regs);
if (err == 0 && (regs->mdio_cfg & MDIO_CFG_RD_ERR) == 0) {
val = (int)(regs->mdio_data & 0xffff);
} else {
val = -1;
}
return (val);
}
static int
fman_mdio_write(struct mdio_bus *base, int addr, int reg, int val)
{
struct fman_mdio_bus *fm;
volatile struct fman_mdio_regs *regs;
uint32_t mdio_ctrl;
int err;
fm = (struct fman_mdio_bus *)base;
regs = fm->regs;
err = fman_mdio_setup(regs, addr, reg, &mdio_ctrl);
if (err != 0) {
return (0);
}
regs->mdio_data = (uint32_t)(val & 0xffff);
fman_mdio_wait(regs);
return (0);
}
static struct mdio_bus *
create_fman_mdio(const void *fdt, int mdio_node)
{
struct fman_mdio_bus *fm = NULL;
fm = malloc(sizeof(*fm), M_TEMP, M_WAITOK | M_ZERO);
if (fm == NULL) {
return (NULL);
}
fm->base.read = fman_mdio_read;
fm->base.write = fman_mdio_write;
fm->base.node = mdio_node;
fm->regs = (volatile struct fman_mdio_regs *)(uintptr_t)
fdt_get_address(fdt, mdio_node);
return (&fm->base);
}
static struct mdio_bus *
create_mdio_bus(const void *fdt, int mdio_node)
{
if (fdt_node_check_compatible(fdt, mdio_node,
"fsl,fman-memac-mdio") == 0 ||
fdt_node_check_compatible(fdt, mdio_node,
"fsl,fman-xmdio") == 0) {
return (create_fman_mdio(fdt, mdio_node));
} else {
return (NULL);
}
}
static int
find_mdio_bus(const void *fdt, int mdio_node,
struct phy_device *phy_dev)
{
struct mdio_bus *mdio_bus = NULL;
SLIST_FOREACH(mdio_bus, &mdio.instances, next) {
if (mdio_bus->node == mdio_node) {
break;
}
}
if (mdio_bus == NULL) {
mdio_bus = create_mdio_bus(fdt, mdio_node);
}
if (mdio_bus == NULL) {
return (ENXIO);
}
phy_dev->mdio.bus = mdio_bus;
return (0);
}
#define MDIO_C45_DEVID1 2
#define MDIO_C45_DEVID2 3
#define MDIO_C45_DEVINPKG1 5
#define MDIO_C45_DEVINPKG2 6
struct phy_c45_device_ids {
uint32_t devices_in_package;
uint32_t device_ids[8];
};
static int
c45_get_devices_in_package(struct phy_device *phy_dev, int dev, uint32_t *dip)
{
int val;
int reg;
reg = (dev << 16) | MDIO_C45_DEVINPKG2;
val = phy_read(phy_dev, reg);
if (val < 0) {
return (-EIO);
}
*dip = (uint32_t)((val & 0xffff) << 16);
reg = (dev << 16) | MDIO_C45_DEVINPKG1;
val = phy_read(phy_dev, reg);
if (val < 0) {
return (-EIO);
}
*dip |= (uint32_t)(val & 0xffff);
return (0);
}
static int
c45_get_id(struct phy_device *phy_dev, int dev, uint32_t *id)
{
int val;
int reg;
reg = (dev << 16) | MDIO_C45_DEVID1;
val = phy_read(phy_dev, reg);
if (val < 0) {
return (-EIO);
}
*id = (uint32_t)((val & 0xffff) << 16);
reg = (dev << 16) | MDIO_C45_DEVID2;
val = phy_read(phy_dev, reg);
if (val < 0) {
return (-EIO);
}
*id |= (uint32_t)(val & 0xffff);
return (0);
}
static bool
c45_has_no_dip(const uint32_t *dip)
{
return ((*dip & 0x1fffffff) == 0x1fffffff);
}
static int
c45_get_ids(struct phy_device *phy_dev, struct phy_c45_device_ids *ids)
{
int i;
int err;
for (i = 1; i < ARRAY_SIZE(ids->device_ids) &&
ids->devices_in_package == 0; ++i) {
err = c45_get_devices_in_package(phy_dev, i,
&ids->devices_in_package);
if (err != 0) {
return (err);
}
if (c45_has_no_dip(&ids->devices_in_package)) {
err = c45_get_devices_in_package(phy_dev, 0,
&ids->devices_in_package);
if (err != 0) {
return (err);
}
if (c45_has_no_dip(&ids->devices_in_package)) {
return (-EIO);
}
break;
}
}
for (i = 1; i < ARRAY_SIZE(ids->device_ids); ++i) {
if ((ids->devices_in_package & (1U << i)) != 0) {
err = c45_get_id(phy_dev, i, &ids->device_ids[i]);
if (err != 0) {
return (err);
}
}
}
return (0);
}
static struct phy_device *
phy_obtain(const void *fdt, int is_c45, int mdio_node, int addr)
{
struct phy_device *phy_dev;
int err;
phy_dev = malloc(sizeof(*phy_dev), M_TEMP, M_WAITOK | M_ZERO);
if (phy_dev == NULL) {
return (NULL);
}
phy_dev->mdio.addr = addr;
phy_dev->mdio.is_c45 = is_c45;
MDIO_LOCK();
err = find_mdio_bus(fdt, mdio_node, phy_dev);
MDIO_UNLOCK();
if (err != 0) {
free(phy_dev, M_TEMP);
return (NULL);
}
if (is_c45) {
struct phy_c45_device_ids ids = { 0 };
c45_get_ids(phy_dev, &ids);
}
return (phy_dev);
}
struct phy_device *
of_phy_find_device(struct device_node *dn)
{
const void *fdt;
const fdt32_t *addr;
int len;
int is_c45;
int mdio_node;
fdt = bsp_fdt_get();
addr = fdt_getprop(fdt, dn->offset, "reg", &len);
if (addr == NULL || len != sizeof(*addr)) {
return (NULL);
}
if (of_device_is_compatible(dn, "ethernet-phy-ieee802.3-c45")) {
is_c45 = MII_ADDR_C45;
} else {
is_c45 = 0;
}
mdio_node = fdt_parent_offset(fdt, dn->offset);
if (mdio_node < 0) {
return (NULL);
}
return (phy_obtain(fdt, is_c45, mdio_node, (int)fdt32_to_cpu(*addr)));
}