mirror of
https://git.rtems.org/rtems-source-builder
synced 2024-10-09 07:15:10 +08:00
62 lines
2.3 KiB
Plaintext
62 lines
2.3 KiB
Plaintext
ASCIIMathML Formulae
|
|
====================
|
|
|
|
http://www1.chapman.edu/~jipsen/mathml/asciimath.html[ASCIIMathML] is
|
|
a clever JavaScript written by Peter Jipsen that dynamically
|
|
transforms mathematical formulae written in a wiki-like plain text
|
|
markup to http://www.w3.org/Math/[MathML] markup which is displayed as
|
|
standard mathematical notation by the Web Browser. See 'Appendix E'
|
|
in the AsciiDoc User Guide for more details.
|
|
|
|
The AsciiDoc `xhtml11` backend supports ASCIIMathML -- it links the
|
|
ASCIIMathML script and escapes ASCIIMathML delimiters and special
|
|
characters to yield valid XHTML. To use ASCIIMathML:
|
|
|
|
1. Include the `-a asciimath` command-line option when you run
|
|
`asciidoc(1)`.
|
|
2. Enclose ASCIIMathML formulas inside math or double-dollar
|
|
passthroughs or in math passthrough blocks.
|
|
|
|
Here's the link:asciimathml.txt[AsciiDoc source] that generated this
|
|
page.
|
|
|
|
.NOTE
|
|
- When you use the `asciimath:[]` inline macro you need to escape `]`
|
|
characters in the formulas with a backslash, escaping is unnecessary
|
|
if you use the double-dollar macro (for examples see the second
|
|
formula below).
|
|
- See the
|
|
http://www1.chapman.edu/~jipsen/mathml/asciimath.html[ASCIIMathML]
|
|
website for ASCIIMathML documentation and the latest version.
|
|
- If the formulas don't appear to be correct you probably need to
|
|
install the correct math fonts (see the
|
|
http://www1.chapman.edu/~jipsen/mathml/asciimath.html[ASCIIMathML]
|
|
website for details).
|
|
- See the link:latexmathml.html[LaTeXMathML page] if you prefer to use
|
|
LaTeX math formulas.
|
|
|
|
A list of example formulas:
|
|
|
|
- $$`[[a,b],[c,d]]((n),(k))`$$
|
|
- asciimath:[x/x={(1,if x!=0),(text{undefined},if x=0):}]
|
|
- asciimath:[d/dxf(x)=lim_(h->0)(f(x+h)-f(x))/h]
|
|
- +++`sum_(i=1)\^n i=(n(n+1))/2`$+++ and *bold
|
|
asciimath:[int_0\^(pi/2) sinx\ dx=1]*
|
|
- asciimath:[(a,b\]={x in RR : a < x <= b}]
|
|
- asciimath:[x^2+y_1+z_12^34]
|
|
|
|
*********************************************************************
|
|
The first three terms factor to give
|
|
asciimath:[(x+b/(2a))^2=(b^2)/(4a^2)-c/a].
|
|
|
|
asciimath:[x+b/(2a)=+-sqrt((b^2)/(4a^2)-c/a)].
|
|
|
|
Now we take square roots on both sides and get
|
|
asciimath:[x+b/(2a)=+-sqrt((b^2)/(4a^2)-c/a)].
|
|
Finally we move the asciimath:[b/(2a)] to the right and simplify to
|
|
get the two solutions:
|
|
*asciimath:[x_(1,2)=(-b+-sqrt(b^2-4ac))/(2a)]*.
|
|
|
|
*********************************************************************
|
|
|