rtems-tools/trace/record/record-client.c
Ryan Long 7c37893893 record-client.c: Ignore return value from visit()
CID 1503011: Unchecked return value in resolve_hold_back().

Closes #4423
2021-09-30 11:09:09 -05:00

731 lines
19 KiB
C

/*
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (C) 2018, 2019 embedded brains GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file must be compatible to general purpose POSIX system, e.g. Linux,
* FreeBSD. It may be used for utility programs.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif
#include <rtems/recordclient.h>
#include <stdlib.h>
#include <string.h>
#define TIME_MASK ( ( UINT32_C( 1 ) << RTEMS_RECORD_TIME_BITS ) - 1 )
static rtems_record_client_status visit(
rtems_record_client_context *ctx,
uint32_t time_event,
uint64_t data
);
static rtems_record_client_status consume_error(
rtems_record_client_context *ctx,
const void *buf,
size_t n
)
{
(void) buf;
(void) n;
return ctx->status;
}
static rtems_record_client_status error(
rtems_record_client_context *ctx,
rtems_record_client_status status
)
{
ctx->status = status;
ctx->consume = consume_error;
return status;
}
static void set_to_bt_scaler(
rtems_record_client_context *ctx,
uint32_t frequency
)
{
uint64_t bin_per_s;
bin_per_s = UINT64_C( 1 ) << 32;
ctx->to_bt_scaler = ( ( bin_per_s << 31 ) + frequency - 1 ) / frequency;
}
static rtems_record_client_status call_handler(
const rtems_record_client_context *ctx,
uint64_t bt,
rtems_record_event event,
uint64_t data
)
{
return ( *ctx->handler )(
bt,
ctx->cpu,
event,
data,
ctx->handler_arg
);
}
static void signal_overflow(
rtems_record_client_per_cpu *per_cpu,
uint32_t data
)
{
per_cpu->hold_back = true;
per_cpu->item_index = 0;
per_cpu->overflow += data;
}
static void resolve_hold_back(
rtems_record_client_context *ctx,
rtems_record_client_per_cpu *per_cpu
)
{
if ( per_cpu->hold_back ) {
uint32_t last_tail;
uint32_t last_head;
uint32_t last_capacity;
uint32_t new_head;
uint32_t new_content;
uint32_t begin_index;
uint32_t index;
uint32_t first;
uint32_t last;
uint32_t delta;
uint64_t uptime;
last_head = per_cpu->head[ per_cpu->tail_head_index ];
last_tail = per_cpu->tail[ per_cpu->tail_head_index ];
new_head = per_cpu->head[ per_cpu->tail_head_index ^ 1 ];
last_capacity = ( last_tail - last_head - 1 ) & ( ctx->count - 1 );
new_content = new_head - last_head;
if ( new_content > last_capacity ) {
begin_index = new_content - last_capacity;
per_cpu->overflow += begin_index;
} else {
begin_index = 0;
}
if ( begin_index >= per_cpu->item_index ) {
per_cpu->item_index = 0;
return;
}
per_cpu->hold_back = false;
first = RTEMS_RECORD_GET_TIME( per_cpu->items[ begin_index ].event );
last = first;
delta = 0;
uptime = 0;
for ( index = begin_index; index < per_cpu->item_index; ++index ) {
const rtems_record_item_64 *item;
rtems_record_event event;
uint32_t time;
item = &per_cpu->items[ index ];
event = RTEMS_RECORD_GET_EVENT( item->event );
time = RTEMS_RECORD_GET_TIME( item->event );
delta += ( time - last ) & TIME_MASK;
last = time;
if (
event == RTEMS_RECORD_UPTIME_LOW
&& index + 1 < per_cpu->item_index
&& RTEMS_RECORD_GET_EVENT( ( item + 1 )->event )
== RTEMS_RECORD_UPTIME_HIGH
) {
uptime = (uint32_t) item->data;
uptime += ( item + 1 )->data << 32;
break;
}
}
per_cpu->uptime.bt = uptime - ( ( delta * ctx->to_bt_scaler ) >> 31 );
per_cpu->uptime.time_at_bt = first;
per_cpu->uptime.time_last = first;
per_cpu->uptime.time_accumulated = 0;
if ( per_cpu->overflow > 0 ) {
call_handler(
ctx,
per_cpu->uptime.bt,
RTEMS_RECORD_PER_CPU_OVERFLOW,
per_cpu->overflow
);
per_cpu->overflow = 0;
}
for ( index = begin_index; index < per_cpu->item_index; ++index ) {
const rtems_record_item_64 *item;
item = &per_cpu->items[ index ];
(void) visit( ctx, item->event, item->data );
}
}
}
static void process_per_cpu_head(
rtems_record_client_context *ctx,
rtems_record_client_per_cpu *per_cpu,
uint64_t data
)
{
uint32_t last_tail;
uint32_t last_head;
uint32_t last_capacity;
uint32_t new_tail;
uint32_t new_head;
uint32_t new_content;
uint32_t content;
new_tail = per_cpu->tail[ per_cpu->tail_head_index ];
new_head = (uint32_t) data;
content = new_head - new_tail;
per_cpu->head[ per_cpu->tail_head_index ] = new_head;
per_cpu->tail_head_index ^= 1;
if ( content >= ctx->count ) {
/*
* This is a complete ring buffer overflow, the server will detect this
* also. It sets the tail to the head plus one and sends us all the
* content. This reduces the ring buffer capacity to zero. So, during
* transfer, new events will overwrite items in transfer. This is handled
* by resolve_hold_back().
*/
per_cpu->tail[ per_cpu->tail_head_index ^ 1 ] = new_head + 1;
signal_overflow( per_cpu, content - ctx->count + 1 );
return;
}
last_tail = per_cpu->tail[ per_cpu->tail_head_index ];
last_head = per_cpu->head[ per_cpu->tail_head_index ];
if ( last_tail == last_head ) {
if ( per_cpu->uptime.bt == 0 ) {
/*
* This is a special case during initial ramp up. We hold back the items
* to deduce the uptime of the first item via resolve_hold_back().
*/
per_cpu->hold_back = true;
} else {
resolve_hold_back( ctx, per_cpu );
}
return;
}
last_capacity = ( last_tail - last_head - 1 ) & ( ctx->count - 1 );
new_content = new_head - last_head;
if ( new_content <= last_capacity || per_cpu->hold_back ) {
resolve_hold_back( ctx, per_cpu );
return;
}
signal_overflow( per_cpu, new_content - last_capacity );
}
static rtems_record_client_status process_per_cpu_count(
rtems_record_client_context *ctx,
uint64_t data
)
{
size_t per_cpu_items;
rtems_record_item_64 *items;
uint32_t cpu;
if ( ctx->count != 0 ) {
return error( ctx, RTEMS_RECORD_CLIENT_ERROR_DOUBLE_PER_CPU_COUNT );
}
if ( ctx->cpu_count == 0 ) {
return error( ctx, RTEMS_RECORD_CLIENT_ERROR_NO_CPU_MAX );
}
ctx->count = (uint32_t) data;
/*
* The ring buffer capacity plus two items for RTEMS_RECORD_PROCESSOR and
* RTEMS_RECORD_PER_CPU_TAIL.
*/
per_cpu_items = ctx->count + 1;
items = malloc( per_cpu_items * ctx->cpu_count * sizeof( *items ) );
if ( items == NULL ) {
return error( ctx, RTEMS_RECORD_CLIENT_ERROR_NO_MEMORY );
}
for ( cpu = 0; cpu < ctx->cpu_count; ++cpu ) {
ctx->per_cpu[ cpu ].items = items;
items += per_cpu_items;
}
return RTEMS_RECORD_CLIENT_SUCCESS;
}
static rtems_record_client_status hold_back(
rtems_record_client_context *ctx,
rtems_record_client_per_cpu *per_cpu,
uint32_t time_event,
rtems_record_event event,
uint64_t data
)
{
if ( event != RTEMS_RECORD_PER_CPU_HEAD ) {
uint32_t item_index;
item_index = per_cpu->item_index;
if ( item_index <= ctx->count ) {
per_cpu->items[ item_index ].event = time_event;
per_cpu->items[ item_index ].data = data;
per_cpu->item_index = item_index + 1;
} else {
return error( ctx, RTEMS_RECORD_CLIENT_ERROR_PER_CPU_ITEMS_OVERFLOW );
}
} else {
return call_handler( ctx, 0, RTEMS_RECORD_GET_EVENT( time_event ), data );
}
return RTEMS_RECORD_CLIENT_SUCCESS;
}
static uint64_t time_bt(
const rtems_record_client_context *ctx,
rtems_record_client_per_cpu *per_cpu,
uint32_t time
)
{
uint64_t bt;
if ( time != 0 ) {
uint32_t delta;
delta = ( time - per_cpu->uptime.time_last ) & TIME_MASK;
per_cpu->uptime.time_last = time;
per_cpu->uptime.time_accumulated += delta;
bt = ( per_cpu->uptime.time_accumulated * ctx->to_bt_scaler ) >> 31;
bt += per_cpu->uptime.bt;
} else {
bt = 0;
}
return bt;
}
static rtems_record_client_status visit(
rtems_record_client_context *ctx,
uint32_t time_event,
uint64_t data
)
{
rtems_record_client_per_cpu *per_cpu;
uint32_t time;
rtems_record_event event;
rtems_record_client_status status;
per_cpu = &ctx->per_cpu[ ctx->cpu ];
time = RTEMS_RECORD_GET_TIME( time_event );
event = RTEMS_RECORD_GET_EVENT( time_event );
switch ( event ) {
case RTEMS_RECORD_PROCESSOR:
if ( data >= ctx->cpu_count ) {
return error( ctx, RTEMS_RECORD_CLIENT_ERROR_UNSUPPORTED_CPU );
}
ctx->cpu = (uint32_t) data;
per_cpu = &ctx->per_cpu[ ctx->cpu ];
break;
case RTEMS_RECORD_UPTIME_LOW:
per_cpu->uptime.bt = (uint32_t) data;
per_cpu->uptime.time_at_bt = time;
per_cpu->uptime.time_last = time;
per_cpu->uptime.time_accumulated = 0;
time = 0;
break;
case RTEMS_RECORD_UPTIME_HIGH:
per_cpu->uptime.bt += data << 32;
time = 0;
break;
case RTEMS_RECORD_PER_CPU_TAIL:
per_cpu->tail[ per_cpu->tail_head_index ] = (uint32_t) data;
break;
case RTEMS_RECORD_PER_CPU_HEAD:
process_per_cpu_head( ctx, per_cpu, data );
break;
case RTEMS_RECORD_PROCESSOR_MAXIMUM:
if ( data >= RTEMS_RECORD_CLIENT_MAXIMUM_CPU_COUNT ) {
return error( ctx, RTEMS_RECORD_CLIENT_ERROR_UNSUPPORTED_CPU_MAX );
}
if ( ctx->cpu_count != 0 ) {
return error( ctx, RTEMS_RECORD_CLIENT_ERROR_DOUBLE_CPU_MAX );
}
ctx->cpu_count = (uint32_t) data + 1;
break;
case RTEMS_RECORD_PER_CPU_COUNT:
status = process_per_cpu_count( ctx, data );
if ( status != RTEMS_RECORD_CLIENT_SUCCESS ) {
return status;
}
break;
case RTEMS_RECORD_FREQUENCY:
set_to_bt_scaler( ctx, (uint32_t) data );
break;
case RTEMS_RECORD_VERSION:
if ( data != RTEMS_RECORD_THE_VERSION ) {
return error( ctx, RTEMS_RECORD_CLIENT_ERROR_UNSUPPORTED_VERSION );
}
break;
default:
break;
}
if ( per_cpu->hold_back ) {
return hold_back( ctx, per_cpu, time_event, event, data );
}
return call_handler( ctx, time_bt( ctx, per_cpu, time ), event, data );
}
static rtems_record_client_status consume_32(
rtems_record_client_context *ctx,
const void *buf,
size_t n
)
{
while ( n > 0 ) {
size_t m;
char *pos;
m = ctx->todo < n ? ctx->todo : n;
pos = ctx->pos;
pos = memcpy( pos, buf, m );
n -= m;
buf = (char *) buf + m;
if ( m == ctx->todo ) {
rtems_record_client_status status;
ctx->todo = sizeof( ctx->item.format_32 );
ctx->pos = &ctx->item.format_32;
status = visit(
ctx,
ctx->item.format_32.event,
ctx->item.format_32.data
);
if ( status != RTEMS_RECORD_CLIENT_SUCCESS ) {
return status;
}
} else {
ctx->todo -= m;
ctx->pos = pos + m;
}
}
return RTEMS_RECORD_CLIENT_SUCCESS;
}
static rtems_record_client_status consume_64(
rtems_record_client_context *ctx,
const void *buf,
size_t n
)
{
while ( n > 0 ) {
size_t m;
char *pos;
m = ctx->todo < n ? ctx->todo : n;
pos = ctx->pos;
pos = memcpy( pos, buf, m );
n -= m;
buf = (char *) buf + m;
if ( m == ctx->todo ) {
rtems_record_client_status status;
ctx->todo = sizeof( ctx->item.format_64 );
ctx->pos = &ctx->item.format_64;
status = visit(
ctx,
ctx->item.format_64.event,
ctx->item.format_64.data
);
if ( status != RTEMS_RECORD_CLIENT_SUCCESS ) {
return status;
}
} else {
ctx->todo -= m;
ctx->pos = pos + m;
}
}
return RTEMS_RECORD_CLIENT_SUCCESS;
}
static rtems_record_client_status consume_swap_32(
rtems_record_client_context *ctx,
const void *buf,
size_t n
)
{
while ( n > 0 ) {
size_t m;
char *pos;
m = ctx->todo < n ? ctx->todo : n;
pos = ctx->pos;
pos = memcpy( pos, buf, m );
n -= m;
buf = (char *) buf + m;
if ( m == ctx->todo ) {
rtems_record_client_status status;
ctx->todo = sizeof( ctx->item.format_32 );
ctx->pos = &ctx->item.format_32;
status = visit(
ctx,
__builtin_bswap32( ctx->item.format_32.event ),
__builtin_bswap32( ctx->item.format_32.data )
);
if ( status != RTEMS_RECORD_CLIENT_SUCCESS ) {
return status;
}
} else {
ctx->todo -= m;
ctx->pos = pos + m;
}
}
return RTEMS_RECORD_CLIENT_SUCCESS;
}
static rtems_record_client_status consume_swap_64(
rtems_record_client_context *ctx,
const void *buf,
size_t n
)
{
while ( n > 0 ) {
size_t m;
char *pos;
m = ctx->todo < n ? ctx->todo : n;
pos = ctx->pos;
pos = memcpy( pos, buf, m );
n -= m;
buf = (char *) buf + m;
if ( m == ctx->todo ) {
rtems_record_client_status status;
ctx->todo = sizeof( ctx->item.format_64 );
ctx->pos = &ctx->item.format_64;
status = visit(
ctx,
__builtin_bswap32( ctx->item.format_64.event ),
__builtin_bswap64( ctx->item.format_64.data )
);
if ( status != RTEMS_RECORD_CLIENT_SUCCESS ) {
return status;
}
} else {
ctx->todo -= m;
ctx->pos = pos + m;
}
}
return RTEMS_RECORD_CLIENT_SUCCESS;
}
static rtems_record_client_status consume_init(
rtems_record_client_context *ctx,
const void *buf,
size_t n
)
{
while ( n > 0 ) {
size_t m;
char *pos;
m = ctx->todo < n ? ctx->todo : n;
pos = ctx->pos;
pos = memcpy( pos, buf, m );
n -= m;
buf = (char *) buf + m;
if ( m == ctx->todo ) {
uint32_t magic;
magic = ctx->header[ 1 ];
switch ( ctx->header[ 0 ] ) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
case RTEMS_RECORD_FORMAT_LE_32:
ctx->todo = sizeof( ctx->item.format_32 );
ctx->pos = &ctx->item.format_32;
ctx->consume = consume_32;
ctx->data_size = 4;
break;
case RTEMS_RECORD_FORMAT_LE_64:
ctx->todo = sizeof( ctx->item.format_64 );
ctx->pos = &ctx->item.format_64;
ctx->consume = consume_64;
ctx->data_size = 8;
break;
case RTEMS_RECORD_FORMAT_BE_32:
ctx->todo = sizeof( ctx->item.format_32 );
ctx->pos = &ctx->item.format_32;
ctx->consume = consume_swap_32;
ctx->data_size = 4;
magic = __builtin_bswap32( magic );
break;
case RTEMS_RECORD_FORMAT_BE_64:
ctx->todo = sizeof( ctx->item.format_64 );
ctx->pos = &ctx->item.format_64;
ctx->consume = consume_swap_64;
ctx->data_size = 8;
magic = __builtin_bswap32( magic );
break;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
case RTEMS_RECORD_FORMAT_LE_32:
ctx->todo = sizeof( ctx->item.format_32 );
ctx->pos = &ctx->item.format_32;
ctx->consume = consume_swap_32;
ctx->data_size = 4;
magic = __builtin_bswap32( magic );
break;
case RTEMS_RECORD_FORMAT_LE_64:
ctx->todo = sizeof( ctx->item.format_64 );
ctx->pos = &ctx->item.format_64;
ctx->consume = consume_swap_64;
ctx->data_size = 8;
magic = __builtin_bswap32( magic );
break;
case RTEMS_RECORD_FORMAT_BE_32:
ctx->todo = sizeof( ctx->item.format_32 );
ctx->pos = &ctx->item.format_32;
ctx->consume = consume_32;
ctx->data_size = 4;
break;
case RTEMS_RECORD_FORMAT_BE_64:
ctx->todo = sizeof( ctx->item.format_64 );
ctx->pos = &ctx->item.format_64;
ctx->consume = consume_64;
ctx->data_size = 8;
break;
#else
#error "unexpected __BYTE_ORDER__"
#endif
default:
return error( ctx, RTEMS_RECORD_CLIENT_ERROR_UNKNOWN_FORMAT );
}
if ( magic != RTEMS_RECORD_MAGIC ) {
return error( ctx, RTEMS_RECORD_CLIENT_ERROR_INVALID_MAGIC );
}
return rtems_record_client_run( ctx, buf, n );
} else {
ctx->todo -= m;
ctx->pos = pos + m;
}
}
return RTEMS_RECORD_CLIENT_SUCCESS;
}
void rtems_record_client_init(
rtems_record_client_context *ctx,
rtems_record_client_handler handler,
void *arg
)
{
ctx = memset( ctx, 0, sizeof( *ctx ) );
ctx->to_bt_scaler = UINT64_C( 1 ) << 31;
ctx->handler = handler;
ctx->handler_arg = arg;
ctx->todo = sizeof( ctx->header );
ctx->pos = &ctx->header;
ctx->consume = consume_init;
}
rtems_record_client_status rtems_record_client_run(
rtems_record_client_context *ctx,
const void *buf,
size_t n
)
{
return ( *ctx->consume )( ctx, buf, n );
}
void rtems_record_client_destroy(
rtems_record_client_context *ctx
)
{
uint32_t cpu;
for ( cpu = 0; cpu < ctx->cpu_count; ++cpu ) {
rtems_record_client_per_cpu *per_cpu;
ctx->cpu = cpu;
per_cpu = &ctx->per_cpu[ cpu ];
per_cpu->head[ per_cpu->tail_head_index ^ 1 ] =
per_cpu->head[ per_cpu->tail_head_index ];
resolve_hold_back( ctx, per_cpu );
}
free( ctx->per_cpu[ 0 ].items );
}