CherryUSB/core/usbd_core.c
2021-07-10 18:31:58 +08:00

1233 lines
38 KiB
C

/**
* @file usbd_core.c
* @brief
*
* Copyright (c) 2021 Bouffalolab team
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
*/
#include "usbd_core.h"
#define USBD_EP_CALLBACK_LIST_SEARCH 0
#define USBD_EP_CALLBACK_ARR_SEARCH 1
#define USBD_EP_CALLBACK_SEARCH_METHOD USBD_EP_CALLBACK_ARR_SEARCH
/* general descriptor field offsets */
#define DESC_bLength 0 /** Length offset */
#define DESC_bDescriptorType 1 /** Descriptor type offset */
/* config descriptor field offsets */
#define CONF_DESC_wTotalLength 2 /** Total length offset */
#define CONF_DESC_bConfigurationValue 5 /** Configuration value offset */
#define CONF_DESC_bmAttributes 7 /** configuration characteristics */
/* interface descriptor field offsets */
#define INTF_DESC_bInterfaceNumber 2 /** Interface number offset */
#define INTF_DESC_bAlternateSetting 3 /** Alternate setting offset */
#define USB_REQUEST_BUFFER_SIZE 256
#define USB_EP_OUT_NUM 8
#define USB_EP_IN_NUM 8
static struct usbd_core_cfg_priv {
/** Setup packet */
struct usb_setup_packet setup;
/** Pointer to data buffer */
uint8_t *ep0_data_buf;
/** Remaining bytes in buffer */
uint32_t ep0_data_buf_residue;
/** Total length of control transfer */
uint32_t ep0_data_buf_len;
/** Zero length packet flag of control transfer */
bool zlp_flag;
/** Pointer to registered descriptors */
const uint8_t *descriptors;
/* Buffer used for storing standard, class and vendor request data */
uint8_t req_data[USB_REQUEST_BUFFER_SIZE];
#if USBD_EP_CALLBACK_SEARCH_METHOD == 1
usbd_endpoint_callback in_ep_cb[USB_EP_IN_NUM];
usbd_endpoint_callback out_ep_cb[USB_EP_OUT_NUM];
#endif
/** Variable to check whether the usb has been enabled */
bool enabled;
/** Variable to check whether the usb has been configured */
bool configured;
/** Currently selected configuration */
uint8_t configuration;
/** Remote wakeup feature status */
uint16_t remote_wakeup;
uint8_t reserved;
} usbd_core_cfg;
static usb_slist_t usbd_class_head = USB_SLIST_OBJECT_INIT(usbd_class_head);
static struct usb_msosv1_descriptor *msosv1_desc;
static struct usb_bos_descriptor *bos_desc;
/**
* @brief print the contents of a setup packet
*
* @param [in] setup The setup packet
*
*/
static void usbd_print_setup(struct usb_setup_packet *setup)
{
USBD_LOG_ERR("Setup: "
"bmRequestType 0x%02x, bRequest 0x%02x, wValue 0x%04x, wIndex 0x%04x, wLength 0x%04x\r\n",
setup->bmRequestType,
setup->bRequest,
setup->wValue,
setup->wIndex,
setup->wLength);
}
/**
* @brief Check if the device is in Configured state
*
* @return true if Configured, false otherwise.
*/
static bool is_device_configured(void)
{
return (usbd_core_cfg.configuration != 0);
}
/**
* @brief Check if the interface of given number is valid
*
* @param [in] interface Number of the addressed interface
*
* This function searches through descriptor and checks
* is the Host has addressed valid interface.
*
* @return true if interface exists - valid
*/
static bool is_interface_valid(uint8_t interface)
{
const uint8_t *p = (uint8_t *)usbd_core_cfg.descriptors;
const struct usb_configuration_descriptor *cfg_descr;
/* Search through descriptor for matching interface */
while (p[DESC_bLength] != 0U) {
if (p[DESC_bDescriptorType] == USB_DESCRIPTOR_TYPE_CONFIGURATION) {
cfg_descr = (const struct usb_configuration_descriptor *)p;
if (interface < cfg_descr->bNumInterfaces) {
return true;
}
}
p += p[DESC_bLength];
}
return false;
}
/**
* @brief Check if the endpoint of given address is valid
*
* @param [in] ep Address of the Endpoint
*
* This function checks if the Endpoint of given address
* is valid for the configured device. Valid Endpoint is
* either Control Endpoint or one used by the device.
*
* @return true if endpoint exists - valid
*/
static bool is_ep_valid(uint8_t ep)
{
/* Check if its Endpoint 0 */
if ((ep & 0x7f) == 0) {
return true;
}
return true;
}
#if USBD_EP_CALLBACK_SEARCH_METHOD == 1
static void usbd_ep_callback_register(void)
{
usb_slist_t *i, *j, *k;
usb_slist_for_each(i, &usbd_class_head)
{
usbd_class_t *class = usb_slist_entry(i, struct usbd_class, list);
usb_slist_for_each(j, &class->intf_list)
{
usbd_interface_t *intf = usb_slist_entry(j, struct usbd_interface, list);
usb_slist_for_each(k, &intf->ep_list)
{
usbd_endpoint_t *ept = usb_slist_entry(k, struct usbd_endpoint, list);
if (ept->ep_cb) {
if (ept->ep_addr & 0x80) {
usbd_core_cfg.in_ep_cb[ept->ep_addr & 0x7f] = ept->ep_cb;
} else {
usbd_core_cfg.out_ep_cb[ept->ep_addr & 0x7f] = ept->ep_cb;
}
}
}
}
}
}
#endif
/**
* @brief configure and enable endpoint
*
* This function sets endpoint configuration according to one specified in USB
* endpoint descriptor and then enables it for data transfers.
*
* @param [in] ep_desc Endpoint descriptor byte array
*
* @return true if successfully configured and enabled
*/
static bool usbd_set_endpoint(const struct usb_endpoint_descriptor *ep_desc)
{
struct usbd_endpoint_cfg ep_cfg;
ep_cfg.ep_addr = ep_desc->bEndpointAddress;
ep_cfg.ep_mps = ep_desc->wMaxPacketSize;
ep_cfg.ep_type = ep_desc->bmAttributes & USBD_EP_TYPE_MASK;
USBD_LOG("Open endpoint:0x%x type:%u mps:%u\r\n",
ep_cfg.ep_addr, ep_cfg.ep_type, ep_cfg.ep_mps);
usbd_ep_open(&ep_cfg);
usbd_core_cfg.configured = true;
return true;
}
/**
* @brief Disable endpoint for transferring data
*
* This function cancels transfers that are associated with endpoint and
* disabled endpoint itself.
*
* @param [in] ep_desc Endpoint descriptor byte array
*
* @return true if successfully deconfigured and disabled
*/
static bool usbd_reset_endpoint(const struct usb_endpoint_descriptor *ep_desc)
{
struct usbd_endpoint_cfg ep_cfg;
ep_cfg.ep_addr = ep_desc->bEndpointAddress;
ep_cfg.ep_mps = ep_desc->wMaxPacketSize;
ep_cfg.ep_type = ep_desc->bmAttributes & USBD_EP_TYPE_MASK;
USBD_LOG("Close endpoint:0x%x type:%u\r\n",
ep_cfg.ep_addr, ep_cfg.ep_type);
usbd_ep_close(ep_cfg.ep_addr);
return true;
}
/**
* @brief get specified USB descriptor
*
* This function parses the list of installed USB descriptors and attempts
* to find the specified USB descriptor.
*
* @param [in] type_index Type and index of the descriptor
* @param [in] lang_id Language ID of the descriptor (currently unused)
* @param [out] len Descriptor length
* @param [out] data Descriptor data
*
* @return true if the descriptor was found, false otherwise
*/
static bool usbd_get_descriptor(uint16_t type_index, uint8_t **data, uint32_t *len)
{
uint8_t type = 0U;
uint8_t index = 0U;
uint8_t *p = NULL;
uint32_t cur_index = 0U;
bool found = false;
type = GET_DESC_TYPE(type_index);
index = GET_DESC_INDEX(type_index);
if ((type == USB_DESCRIPTOR_TYPE_STRING) && (index == USB_OSDESC_STRING_DESC_INDEX)) {
USBD_LOG("MS OS Descriptor string read\r\n");
if (!msosv1_desc) {
return false;
}
*data = (uint8_t *)msosv1_desc->string;
*len = sizeof(struct usb_msosv1_string_descriptor);
return true;
} else if (type == USB_DESCRIPTOR_TYPE_BINARY_OBJECT_STORE) {
USBD_LOG("BOS descriptor string read\r\n");
if (!bos_desc) {
return false;
}
*data = bos_desc->bos_id;
*len = bos_desc->bos_id_len;
return true;
}
/*
* Invalid types of descriptors,
* see USB Spec. Revision 2.0, 9.4.3 Get Descriptor
*/
else if ((type == USB_DESCRIPTOR_TYPE_INTERFACE) || (type == USB_DESCRIPTOR_TYPE_ENDPOINT) ||
(type > USB_DESCRIPTOR_TYPE_OTHER_SPEED)) {
return false;
}
p = (uint8_t *)usbd_core_cfg.descriptors;
cur_index = 0U;
while (p[DESC_bLength] != 0U) {
if (p[DESC_bDescriptorType] == type) {
if (cur_index == index) {
found = true;
break;
}
cur_index++;
}
/* skip to next descriptor */
p += p[DESC_bLength];
}
if (found) {
/* set data pointer */
*data = p;
/* get length from structure */
if (type == USB_DESCRIPTOR_TYPE_CONFIGURATION) {
/* configuration descriptor is an
* exception, length is at offset
* 2 and 3
*/
*len = (p[CONF_DESC_wTotalLength]) |
(p[CONF_DESC_wTotalLength + 1] << 8);
} else {
/* normally length is at offset 0 */
*len = p[DESC_bLength];
}
} else {
/* nothing found */
USBD_LOG_ERR("descriptor <type:%x,index:%x> not found!\r\n", type, index);
}
return found;
}
/**
* @brief set USB configuration
*
* This function configures the device according to the specified configuration
* index and alternate setting by parsing the installed USB descriptor list.
* A configuration index of 0 unconfigures the device.
*
* @param [in] config_index Configuration index
* @param [in] alt_setting Alternate setting number
*
* @return true if successfully configured false if error or unconfigured
*/
static bool usbd_set_configuration(uint8_t config_index, uint8_t alt_setting)
{
uint8_t *p = (uint8_t *)usbd_core_cfg.descriptors;
uint8_t cur_alt_setting = 0xFF;
uint8_t cur_config = 0xFF;
bool found = false;
if (config_index == 0U) {
/* TODO: unconfigure device */
USBD_LOG_ERR("Device not configured - invalid configuration\r\n");
return true;
}
/* configure endpoints for this configuration/altsetting */
while (p[DESC_bLength] != 0U) {
switch (p[DESC_bDescriptorType]) {
case USB_DESCRIPTOR_TYPE_CONFIGURATION:
/* remember current configuration index */
cur_config = p[CONF_DESC_bConfigurationValue];
if (cur_config == config_index) {
found = true;
}
break;
case USB_DESCRIPTOR_TYPE_INTERFACE:
/* remember current alternate setting */
cur_alt_setting =
p[INTF_DESC_bAlternateSetting];
break;
case USB_DESCRIPTOR_TYPE_ENDPOINT:
if ((cur_config != config_index) ||
(cur_alt_setting != alt_setting)) {
break;
}
found = usbd_set_endpoint((struct usb_endpoint_descriptor *)p);
break;
default:
break;
}
/* skip to next descriptor */
p += p[DESC_bLength];
}
return found;
}
/**
* @brief set USB interface
*
* @param [in] iface Interface index
* @param [in] alt_setting Alternate setting number
*
* @return true if successfully configured false if error or unconfigured
*/
static bool usbd_set_interface(uint8_t iface, uint8_t alt_setting)
{
const uint8_t *p = usbd_core_cfg.descriptors;
const uint8_t *if_desc = NULL;
struct usb_endpoint_descriptor *ep_desc;
uint8_t cur_alt_setting = 0xFF;
uint8_t cur_iface = 0xFF;
bool ret = false;
USBD_LOG_DBG("iface %u alt_setting %u\r\n", iface, alt_setting);
while (p[DESC_bLength] != 0U) {
switch (p[DESC_bDescriptorType]) {
case USB_DESCRIPTOR_TYPE_INTERFACE:
/* remember current alternate setting */
cur_alt_setting = p[INTF_DESC_bAlternateSetting];
cur_iface = p[INTF_DESC_bInterfaceNumber];
if (cur_iface == iface &&
cur_alt_setting == alt_setting) {
if_desc = (void *)p;
}
USBD_LOG_DBG("Current iface %u alt setting %u",
cur_iface, cur_alt_setting);
break;
case USB_DESCRIPTOR_TYPE_ENDPOINT:
if (cur_iface == iface) {
ep_desc = (struct usb_endpoint_descriptor *)p;
if (cur_alt_setting != alt_setting) {
ret = usbd_reset_endpoint(ep_desc);
} else {
ret = usbd_set_endpoint(ep_desc);
}
}
break;
default:
break;
}
/* skip to next descriptor */
p += p[DESC_bLength];
}
usbd_event_notify_handler(USB_EVENT_SET_INTERFACE, (void *)if_desc);
return ret;
}
/**
* @brief handle a standard device request
*
* @param [in] setup The setup packet
* @param [in,out] len Pointer to data length
* @param [in,out] ep0_data_buf Data buffer
*
* @return true if the request was handled successfully
*/
static bool usbd_std_device_req_handler(struct usb_setup_packet *setup, uint8_t **data, uint32_t *len)
{
uint16_t value = setup->wValue;
// uint16_t index = setup->wIndex;
bool ret = true;
switch (setup->bRequest) {
case USB_REQUEST_GET_STATUS:
USBD_LOG_DBG("REQ_GET_STATUS\r\n");
/* bit 0: self-powered */
/* bit 1: remote wakeup */
*data = (uint8_t *)&usbd_core_cfg.remote_wakeup;
*len = 2;
break;
case USB_REQUEST_CLEAR_FEATURE:
USBD_LOG_DBG("REQ_CLEAR_FEATURE\r\n");
ret = false;
if (value == USB_FEATURE_REMOTE_WAKEUP) {
usbd_core_cfg.remote_wakeup = 0;
usbd_event_notify_handler(USB_EVENT_CLEAR_REMOTE_WAKEUP, NULL);
ret = true;
}
break;
case USB_REQUEST_SET_FEATURE:
USBD_LOG_DBG("REQ_SET_FEATURE\r\n");
ret = false;
if (value == USB_FEATURE_REMOTE_WAKEUP) {
usbd_core_cfg.remote_wakeup = 1;
usbd_event_notify_handler(USB_EVENT_SET_REMOTE_WAKEUP, NULL);
ret = true;
}
if (value == USB_FEATURE_TEST_MODE) {
/* put TEST_MODE code here */
}
break;
case USB_REQUEST_SET_ADDRESS:
USBD_LOG_DBG("REQ_SET_ADDRESS, addr 0x%x\r\n", value);
usbd_set_address(value);
break;
case USB_REQUEST_GET_DESCRIPTOR:
USBD_LOG_DBG("REQ_GET_DESCRIPTOR\r\n");
ret = usbd_get_descriptor(value, data, len);
break;
case USB_REQUEST_SET_DESCRIPTOR:
USBD_LOG_DBG("Device req 0x%02x not implemented\r\n", setup->bRequest);
ret = false;
break;
case USB_REQUEST_GET_CONFIGURATION:
USBD_LOG_DBG("REQ_GET_CONFIGURATION\r\n");
/* indicate if we are configured */
*data = (uint8_t *)&usbd_core_cfg.configuration;
*len = 1;
break;
case USB_REQUEST_SET_CONFIGURATION:
value &= 0xFF;
USBD_LOG_DBG("REQ_SET_CONFIGURATION, conf 0x%x\r\n", value);
if (!usbd_set_configuration(value, 0)) {
USBD_LOG_DBG("USB Set Configuration failed\r\n");
ret = false;
} else {
/* configuration successful,
* update current configuration
*/
usbd_core_cfg.configuration = value;
usbd_event_notify_handler(USB_EVENT_CONFIGURED, NULL);
}
break;
case USB_REQUEST_GET_INTERFACE:
break;
case USB_REQUEST_SET_INTERFACE:
break;
default:
USBD_LOG_ERR("Illegal device req 0x%02x\r\n", setup->bRequest);
ret = false;
break;
}
return ret;
}
/**
* @brief handle a standard interface request
*
* @param [in] setup The setup packet
* @param [in,out] len Pointer to data length
* @param [in] ep0_data_buf Data buffer
*
* @return true if the request was handled successfully
*/
static bool usbd_std_interface_req_handler(struct usb_setup_packet *setup,
uint8_t **data, uint32_t *len)
{
/** The device must be configured to accept standard interface
* requests and the addressed Interface must be valid.
*/
if (!is_device_configured() ||
(!is_interface_valid((uint8_t)setup->wIndex))) {
return false;
}
switch (setup->bRequest) {
case USB_REQUEST_GET_STATUS:
/* no bits specified */
*data = (uint8_t *)&usbd_core_cfg.remote_wakeup;
*len = 2;
break;
case USB_REQUEST_CLEAR_FEATURE:
case USB_REQUEST_SET_FEATURE:
/* not defined for interface */
return false;
case USB_REQUEST_GET_INTERFACE:
/** This handler is called for classes that does not support
* alternate Interfaces so always return 0. Classes that
* support alternative interfaces handles GET_INTERFACE
* in custom_handler.
*/
*data = (uint8_t *)&usbd_core_cfg.reserved;
*len = 1;
break;
case USB_REQUEST_SET_INTERFACE:
USBD_LOG_DBG("REQ_SET_INTERFACE\r\n");
usbd_set_interface(setup->wIndex, setup->wValue);
break;
default:
USBD_LOG_ERR("Illegal interface req 0x%02x\r\n", setup->bRequest);
return false;
}
return true;
}
/**
* @brief handle a standard endpoint request
*
* @param [in] setup The setup packet
* @param [in,out] len Pointer to data length
* @param [in] ep0_data_buf Data buffer
*
* @return true if the request was handled successfully
*/
static bool usbd_std_endpoint_req_handler(struct usb_setup_packet *setup, uint8_t **data, uint32_t *len)
{
uint8_t ep = (uint8_t)setup->wIndex;
/* Check if request addresses valid Endpoint */
if (!is_ep_valid(ep)) {
return false;
}
switch (setup->bRequest) {
case USB_REQUEST_GET_STATUS:
/** This request is valid for Control Endpoints when
* the device is not yet configured. For other
* Endpoints the device must be configured.
* Firstly check if addressed ep is Control Endpoint.
* If no then the device must be in Configured state
* to accept the request.
*/
if (((ep & 0x7f) == 0) || is_device_configured()) {
/* bit 0 - Endpoint halted or not */
usbd_ep_is_stalled(ep, (uint8_t *)&usbd_core_cfg.remote_wakeup);
*data = (uint8_t *)&usbd_core_cfg.remote_wakeup;
*len = 2;
break;
}
return false;
case USB_REQUEST_CLEAR_FEATURE:
if (setup->wValue == USB_FEATURE_ENDPOINT_STALL) {
/** This request is valid for Control Endpoints when
* the device is not yet configured. For other
* Endpoints the device must be configured.
* Firstly check if addressed ep is Control Endpoint.
* If no then the device must be in Configured state
* to accept the request.
*/
if (((ep & 0x7f) == 0) || is_device_configured()) {
USBD_LOG_ERR("ep:%x clear halt\r\n", ep);
usbd_ep_clear_stall(ep);
usbd_event_notify_handler(USB_EVENT_CLEAR_HALT, NULL);
break;
}
}
/* only ENDPOINT_HALT defined for endpoints */
return false;
case USB_REQUEST_SET_FEATURE:
if (setup->wValue == USB_FEATURE_ENDPOINT_STALL) {
/** This request is valid for Control Endpoints when
* the device is not yet configured. For other
* Endpoints the device must be configured.
* Firstly check if addressed ep is Control Endpoint.
* If no then the device must be in Configured state
* to accept the request.
*/
if (((ep & 0x7f) == 0) || is_device_configured()) {
/* set HALT by stalling */
USBD_LOG_ERR("ep:%x set halt\r\n", ep);
usbd_ep_set_stall(ep);
usbd_event_notify_handler(USB_EVENT_SET_HALT, NULL);
break;
}
}
/* only ENDPOINT_HALT defined for endpoints */
return false;
case USB_REQUEST_SYNCH_FRAME:
/* For Synch Frame request the device must be configured */
if (is_device_configured()) {
/* Not supported, return false anyway */
USBD_LOG_DBG("ep req 0x%02x not implemented\r\n", setup->bRequest);
}
return false;
default:
USBD_LOG_ERR("Illegal ep req 0x%02x\r\n", setup->bRequest);
return false;
}
return true;
}
/**
* @brief default handler for standard ('chapter 9') requests
*
* If a custom request handler was installed, this handler is called first.
*
* @param [in] setup The setup packet
* @param [in] ep0_data_buf Data buffer
* @param [in,out] len Pointer to data length
*
* @return true if the request was handled successfully
*/
static int usbd_standard_request_handler(struct usb_setup_packet *setup, uint8_t **data, uint32_t *len)
{
int rc = 0;
switch (setup->bmRequestType_b.Recipient) {
case USB_REQUEST_TO_DEVICE:
if (usbd_std_device_req_handler(setup, data, len) == false) {
rc = -1;
}
break;
case USB_REQUEST_TO_INTERFACE:
if (usbd_std_interface_req_handler(setup, data, len) == false) {
rc = -1;
}
break;
case USB_REQUEST_TO_ENDPOINT:
if (usbd_std_endpoint_req_handler(setup, data, len) == false) {
rc = -1;
}
break;
default:
rc = -1;
}
return rc;
}
/*
* The functions usbd_class_request_handler(), usbd_custom_request_handler() and usbd_vendor_request_handler()
* go through the interfaces one after the other and compare the
* bInterfaceNumber with the wIndex and and then call the appropriate
* callback of the USB function.
* Note, a USB function can have more than one interface and the
* request does not have to be directed to the first interface (unlikely).
* These functions can be simplified and moved to usb_handle_request()
* when legacy initialization throgh the usb_set_config() and
* usb_enable() is no longer needed.
*/
static int usbd_class_request_handler(struct usb_setup_packet *setup, uint8_t **data, uint32_t *len)
{
USBD_LOG_DBG("bRequest 0x%02x, wIndex 0x%04x", setup->bRequest, setup->wIndex);
if (setup->bmRequestType_b.Recipient != USB_REQUEST_TO_INTERFACE) {
return -1;
}
usb_slist_t *i, *j;
usb_slist_for_each(i, &usbd_class_head)
{
usbd_class_t *class = usb_slist_entry(i, struct usbd_class, list);
usb_slist_for_each(j, &class->intf_list)
{
usbd_interface_t *intf = usb_slist_entry(j, struct usbd_interface, list);
if (intf->class_handler && (intf->intf_num == (setup->wIndex & 0xFF))) {
return intf->class_handler(setup, data, len);
}
}
}
return -1;
}
static int usbd_vendor_request_handler(struct usb_setup_packet *setup, uint8_t **data, uint32_t *len)
{
USBD_LOG_DBG("bRequest 0x%02x, wValue0x%04x, wIndex 0x%04x", setup->bRequest, setup->wValue, setup->wIndex);
// if(setup->bmRequestType_b.Recipient != USB_REQUEST_TO_DEVICE)
// {
// return -1;
// }
if (msosv1_desc) {
if (setup->bRequest == msosv1_desc->vendor_code) {
switch (setup->wIndex) {
case 0x04:
USBD_LOG("Handle Compat ID\r\n");
*data = (uint8_t *)msosv1_desc->compat_id;
*len = msosv1_desc->compat_id_len;
return 0;
case 0x05:
USBD_LOG("Handle Compat properties\r\n");
*data = (uint8_t *)msosv1_desc->comp_id_property;
*len = msosv1_desc->comp_id_property_len;
return 0;
default:
break;
}
}
}
usb_slist_t *i, *j;
usb_slist_for_each(i, &usbd_class_head)
{
usbd_class_t *class = usb_slist_entry(i, struct usbd_class, list);
usb_slist_for_each(j, &class->intf_list)
{
usbd_interface_t *intf = usb_slist_entry(j, struct usbd_interface, list);
if (intf->vendor_handler && !intf->vendor_handler(setup, data, len)) {
return 0;
}
}
}
return -1;
}
static int usbd_custom_request_handler(struct usb_setup_packet *setup, uint8_t **data, uint32_t *len)
{
USBD_LOG_DBG("bRequest 0x%02x, wIndex 0x%04x", setup->bRequest, setup->wIndex);
if (setup->bmRequestType_b.Recipient != USB_REQUEST_TO_INTERFACE) {
return -1;
}
usb_slist_t *i, *j;
usb_slist_for_each(i, &usbd_class_head)
{
usbd_class_t *class = usb_slist_entry(i, struct usbd_class, list);
usb_slist_for_each(j, &class->intf_list)
{
usbd_interface_t *intf = usb_slist_entry(j, struct usbd_interface, list);
if (intf->custom_handler && (intf->intf_num == (setup->wIndex & 0xFF))) {
return intf->custom_handler(setup, data, len);
}
}
}
return -1;
}
/**
* @brief handle a request by calling one of the installed request handlers
*
* Local function to handle a request by calling one of the installed request
* handlers. In case of data going from host to device, the data is at *ppbData.
* In case of data going from device to host, the handler can either choose to
* write its data at *ppbData or update the data pointer.
*
* @param [in] setup The setup packet
* @param [in,out] data Data buffer
* @param [in,out] len Pointer to data length
*
* @return true if the request was handles successfully
*/
static bool usbd_setup_request_handler(struct usb_setup_packet *setup, uint8_t **data, uint32_t *len)
{
uint8_t type = setup->bmRequestType_b.Type;
if (type == USB_REQUEST_STANDARD) {
if (!usbd_custom_request_handler(setup, data, len)) {
return true;
}
if (usbd_standard_request_handler(setup, data, len) < 0) {
USBD_LOG_ERR("Handler Error %d\r\n", type);
usbd_print_setup(setup);
return false;
}
} else if (type == USB_REQUEST_CLASS) {
if (usbd_class_request_handler(setup, data, len) < 0) {
USBD_LOG_ERR("Handler Error %d\r\n", type);
usbd_print_setup(setup);
return false;
}
} else if (type == USB_REQUEST_VENDOR) {
if (usbd_vendor_request_handler(setup, data, len) < 0) {
USBD_LOG_ERR("Handler Error %d\r\n", type);
usbd_print_setup(setup);
return false;
}
} else {
return false;
}
return true;
}
/**
* @brief send data or status to host
*
* @return N/A
*/
static void usbd_send_to_host(uint16_t len)
{
uint32_t chunk = 0U;
if (usbd_core_cfg.zlp_flag == false) {
chunk = usbd_core_cfg.ep0_data_buf_residue;
usbd_ep_write(USB_CONTROL_IN_EP0, usbd_core_cfg.ep0_data_buf,
usbd_core_cfg.ep0_data_buf_residue, &chunk);
usbd_core_cfg.ep0_data_buf += chunk;
usbd_core_cfg.ep0_data_buf_residue -= chunk;
/*
* Set ZLP flag when host asks for a bigger length and the
* last chunk is wMaxPacketSize long, to indicate the last
* packet.
*/
/* Send less data as requested during the Setup stage */
if ((!usbd_core_cfg.ep0_data_buf_residue) && !(usbd_core_cfg.ep0_data_buf_len % USB_CTRL_EP_MPS)) {
/* Transfers a zero-length packet */
// USBD_LOG("ZLP, requested %u , length %u ",
// len, usb_dev.ep0_data_buf_len);
usbd_core_cfg.zlp_flag = true;
}
} else {
usbd_core_cfg.zlp_flag = false;
usbd_ep_write(USB_CONTROL_IN_EP0, NULL, 0, NULL);
}
}
static void usbd_ep0_setup_handler(void)
{
struct usb_setup_packet *setup = &usbd_core_cfg.setup;
/*
* OUT transfer, Setup packet,
* reset request message state machine
*/
if (usbd_ep_read(USB_CONTROL_OUT_EP0, (uint8_t *)setup,
sizeof(struct usb_setup_packet), NULL) < 0) {
USBD_LOG_ERR("Read Setup Packet failed\r\n");
usbd_ep_set_stall(USB_CONTROL_IN_EP0);
return;
}
//usbd_print_setup(setup);
if (setup->wLength > USB_REQUEST_BUFFER_SIZE) {
if (setup->bmRequestType_b.Dir != USB_REQUEST_DEVICE_TO_HOST) {
USBD_LOG_ERR("Request buffer too small\r\n");
usbd_ep_set_stall(USB_CONTROL_IN_EP0);
return;
}
}
// usbd_core_cfg.ep0_data_buf = usbd_core_cfg.req_data;
usbd_core_cfg.ep0_data_buf_residue = setup->wLength;
usbd_core_cfg.ep0_data_buf_len = setup->wLength;
usbd_core_cfg.zlp_flag = false;
/* this maybe set code in class request code */
if (setup->wLength &&
setup->bmRequestType_b.Dir == USB_REQUEST_HOST_TO_DEVICE) {
USBD_LOG_DBG("prepare to out data\r\n");
/*set ep ack to recv next data*/
usbd_ep_read(USB_CONTROL_OUT_EP0, NULL, 0, NULL);
return;
}
/* Ask installed handler to process request */
if (!usbd_setup_request_handler(setup, &usbd_core_cfg.ep0_data_buf, &usbd_core_cfg.ep0_data_buf_len)) {
USBD_LOG_ERR("usbd_setup_request_handler failed\r\n");
usbd_ep_set_stall(USB_CONTROL_IN_EP0);
return;
}
/* Send smallest of requested and offered length */
usbd_core_cfg.ep0_data_buf_residue = MIN(usbd_core_cfg.ep0_data_buf_len,
setup->wLength);
/*Send data or status to host*/
usbd_send_to_host(setup->wLength);
}
static void usbd_ep0_out_handler(void)
{
uint32_t chunk = 0U;
struct usb_setup_packet *setup = &usbd_core_cfg.setup;
/* OUT transfer, status packets */
if (usbd_core_cfg.ep0_data_buf_residue == 0) {
/* absorb zero-length status message */
USBD_LOG_DBG("recv status\r\n");
if (usbd_ep_read(USB_CONTROL_OUT_EP0,
NULL,
0, NULL) < 0) {
USBD_LOG_ERR("Read DATA Packet failed\r\n");
usbd_ep_set_stall(USB_CONTROL_IN_EP0);
}
return;
}
usbd_core_cfg.ep0_data_buf = usbd_core_cfg.req_data;
/* OUT transfer, data packets */
if (usbd_ep_read(USB_CONTROL_OUT_EP0,
usbd_core_cfg.ep0_data_buf,
usbd_core_cfg.ep0_data_buf_residue, &chunk) < 0) {
USBD_LOG_ERR("Read DATA Packet failed\r\n");
usbd_ep_set_stall(USB_CONTROL_IN_EP0);
return;
}
usbd_core_cfg.ep0_data_buf += chunk;
usbd_core_cfg.ep0_data_buf_residue -= chunk;
if (usbd_core_cfg.ep0_data_buf_residue == 0) {
/* Received all, send data to handler */
usbd_core_cfg.ep0_data_buf = usbd_core_cfg.req_data;
if (!usbd_setup_request_handler(setup, &usbd_core_cfg.ep0_data_buf, &usbd_core_cfg.ep0_data_buf_len)) {
USBD_LOG_ERR("usbd_setup_request_handler1 failed\r\n");
usbd_ep_set_stall(USB_CONTROL_IN_EP0);
return;
}
/*Send status to host*/
usbd_send_to_host(setup->wLength);
} else {
USBD_LOG_ERR("ep0_data_buf_residue is not zero\r\n");
}
}
static void usbd_ep0_in_handler(void)
{
struct usb_setup_packet *setup = &usbd_core_cfg.setup;
/* Send more data if available */
if (usbd_core_cfg.ep0_data_buf_residue != 0 || usbd_core_cfg.zlp_flag == true) {
usbd_send_to_host(setup->wLength);
}
}
static void usbd_ep_out_handler(uint8_t ep)
{
#if USBD_EP_CALLBACK_SEARCH_METHOD == 0
usb_slist_t *i, *j, *k;
usb_slist_for_each(i, &usbd_class_head)
{
usbd_class_t *class = usb_slist_entry(i, struct usbd_class, list);
usb_slist_for_each(j, &class->intf_list)
{
usbd_interface_t *intf = usb_slist_entry(j, struct usbd_interface, list);
usb_slist_for_each(k, &intf->ep_list)
{
usbd_endpoint_t *ept = usb_slist_entry(k, struct usbd_endpoint, list);
if ((ept->ep_addr == ep) && ept->ep_cb) {
ept->ep_cb(ep);
}
}
}
}
#else
if (usbd_core_cfg.out_ep_cb[ep & 0x7f]) {
usbd_core_cfg.out_ep_cb[ep & 0x7f](ep);
}
#endif
}
static void usbd_ep_in_handler(uint8_t ep)
{
#if USBD_EP_CALLBACK_SEARCH_METHOD == 0
usb_slist_t *i, *j, *k;
usb_slist_for_each(i, &usbd_class_head)
{
usbd_class_t *class = usb_slist_entry(i, struct usbd_class, list);
usb_slist_for_each(j, &class->intf_list)
{
usbd_interface_t *intf = usb_slist_entry(j, struct usbd_interface, list);
usb_slist_for_each(k, &intf->ep_list)
{
usbd_endpoint_t *ept = usb_slist_entry(k, struct usbd_endpoint, list);
if ((ept->ep_addr == ep) && ept->ep_cb) {
ept->ep_cb(ep);
}
}
}
}
#else
if (usbd_core_cfg.in_ep_cb[ep & 0x7f]) {
usbd_core_cfg.in_ep_cb[ep & 0x7f](ep);
}
#endif
}
static void usbd_class_event_notify_handler(uint8_t event, void *arg)
{
usb_slist_t *i, *j;
usb_slist_for_each(i, &usbd_class_head)
{
usbd_class_t *class = usb_slist_entry(i, struct usbd_class, list);
usb_slist_for_each(j, &class->intf_list)
{
usbd_interface_t *intf = usb_slist_entry(j, struct usbd_interface, list);
if (intf->notify_handler) {
intf->notify_handler(event, arg);
}
}
}
}
void usbd_event_notify_handler(uint8_t event, void *arg)
{
switch (event) {
case USB_EVENT_RESET:
usbd_set_address(0);
#if USBD_EP_CALLBACK_SEARCH_METHOD == 1
usbd_ep_callback_register();
#endif
case USB_EVENT_ERROR:
case USB_EVENT_SOF:
case USB_EVENT_CONNECTED:
case USB_EVENT_CONFIGURED:
case USB_EVENT_SUSPEND:
case USB_EVENT_DISCONNECTED:
case USB_EVENT_RESUME:
case USB_EVENT_SET_INTERFACE:
case USB_EVENT_SET_REMOTE_WAKEUP:
case USB_EVENT_CLEAR_REMOTE_WAKEUP:
case USB_EVENT_SET_HALT:
case USB_EVENT_CLEAR_HALT:
usbd_class_event_notify_handler(event, arg);
break;
case USB_EVENT_SETUP_NOTIFY:
usbd_ep0_setup_handler();
break;
case USB_EVENT_EP0_IN_NOTIFY:
usbd_ep0_in_handler();
break;
case USB_EVENT_EP0_OUT_NOTIFY:
usbd_ep0_out_handler();
break;
case USB_EVENT_EP_IN_NOTIFY:
usbd_ep_in_handler((uint32_t)arg);
break;
case USB_EVENT_EP_OUT_NOTIFY:
usbd_ep_out_handler((uint32_t)arg);
break;
default:
USBD_LOG_ERR("USB unknown event: %d", event);
break;
}
}
void usbd_desc_register(const uint8_t *desc)
{
usbd_core_cfg.descriptors = desc;
}
/* Register MS OS Descriptors version 1 */
void usbd_msosv1_desc_register(struct usb_msosv1_descriptor *desc)
{
msosv1_desc = desc;
}
void usbd_class_register(usbd_class_t *class)
{
usb_slist_add_tail(&usbd_class_head, &class->list);
usb_slist_init(&class->intf_list);
}
void usbd_class_add_interface(usbd_class_t *class, usbd_interface_t *intf)
{
static uint8_t intf_offset = 0;
intf->intf_num = intf_offset;
usb_slist_add_tail(&class->intf_list, &intf->list);
usb_slist_init(&intf->ep_list);
intf_offset++;
}
void usbd_interface_add_endpoint(usbd_interface_t *intf, usbd_endpoint_t *ep)
{
usb_slist_add_tail(&intf->ep_list, &ep->list);
}
bool usb_device_is_configured(void)
{
return usbd_core_cfg.configured;
}