2022-12-12 18:06:22 -05:00

90 lines
2.7 KiB
Python

# ----------------------------------------------------------------------
# Project: TinyEngine
# Title: maxpool2d.py
#
# Reference papers:
# - MCUNet: Tiny Deep Learning on IoT Device, NeurIPS 2020
# - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, NeurIPS 2021
# - MCUNetV3: On-Device Training Under 256KB Memory, NeurIPS 2022
# Contact authors:
# - Wei-Ming Chen, wmchen@mit.edu
# - Wei-Chen Wang, wweichen@mit.edu
# - Ji Lin, jilin@mit.edu
# - Ligeng Zhu, ligeng@mit.edu
# - Song Han, songhan@mit.edu
#
# Target ISA: ARMv7E-M
# ----------------------------------------------------------------------
import warnings
from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts
__all__ = ["maxPool2d"]
default_params = {
# op related
"op": "MAX_POOL_2D",
"is_SEBlock": False,
"filter_h": None,
"filter_w": None,
"stride_h": None,
"stride_w": None,
"pad_h": None,
"pad_w": None,
"input_idx": None,
"output_idx": None,
# tensor related
"input_dim": None,
"input_h": None,
"input_w": None,
"input_c": None,
"output_dim": None,
"output_h": None,
"output_w": None,
"output_c": None,
"input_dtype": "int8",
"output_dtype": "int8",
# quantization related
"input_zero_point": None,
"output_zero_point": None,
"input_scale": None,
"output_scale": None,
}
class maxPool2d(basicOperator):
def __init__(self, params: dict) -> None:
self.params = deep_copy_dicts(default_params)
overwrite_dicts(self.params, params)
super().__init__()
# handle input/output tensors in HWC format
self._add_input(
self.params["input_idx"],
self.params["input_dtype"],
self.params["input_c"],
self.params["input_w"],
self.params["input_h"],
)
self._add_output(
self.params["output_idx"],
self.params["output_dtype"],
self.params["output_c"],
self.params["output_w"],
self.params["output_h"],
)
if None in default_params:
warnings.warn(f"parameters are not all set for op {self.params['op']}")
def generate_inference_str(self):
params = self.params
string = f"max_pooling({self._getBufferstr(params['input_buf_add'], params['input_buf_add_offset'])},"
string += (
f"{str(params['input_h'])},{str(params['input_w'])},{str(params['input_c'])},{str(params['stride_h'])},"
)
string += f"{str(params['stride_w'])},{str(params['output_h'])},{str(params['output_w'])},-128,127,"
string += f"{self._getBufferstr(params['output_buf_add'], params['output_buf_add_offset'])});\n"
return string