2022-08-26 17:42:09 +00:00

114 lines
3.6 KiB
Python

# ----------------------------------------------------------------------
# Project: TinyEngine
# Title: add.py
#
# Reference papers:
# - MCUNet: Tiny Deep Learning on IoT Device, NeurIPS 2020
# - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning, NeurIPS 2021
# - MCUNetV3: On-Device Training Under 256KB Memory, arXiv:2206.15472
# Contact authors:
# - Wei-Ming Chen, wmchen@mit.edu
# - Wei-Chen Wang, wweichen@mit.edu
# - Ji Lin, jilin@mit.edu
# - Ligeng Zhu, ligeng@mit.edu
# - Song Han, songhan@mit.edu
#
# Target ISA: ARMv7E-M
# ----------------------------------------------------------------------
import warnings
from .basic_utils import basicOperator, deep_copy_dicts, overwrite_dicts
__all__ = ["Add"]
default_params = {
# op related
"op": "ADD",
"input_idx": None,
"input2_idx": None,
"output_idx": None,
# tensor related
"input_dim": None,
"input_h": None,
"input_w": None,
"input_c": None,
"input2_dim": None,
"input2_h": None,
"input2_w": None,
"input2_c": None,
"output_dim": None,
"output_h": None,
"output_w": None,
"output_c": None,
"input_dtype": "int8",
"input2_dtype": "int8",
"output_dtype": "int8",
# quantization related
"input_zero_point": None,
"input2_zero_point": None,
"output_zero_point": None,
"input_scale": None,
"input2_scale": None,
"output_scale": None,
"input_multiplier": None,
"input2_multiplier": None,
"output_multiplier": None,
"input_effective_scale": None,
"input2_effective_scale": None,
"output_effective_scale": None,
"input_shift": None,
"input2_shift": None,
"output_shift": None,
"left_shift": None,
}
class Add(basicOperator):
def __init__(self, params: dict) -> None:
self.params = deep_copy_dicts(default_params)
overwrite_dicts(self.params, params)
super().__init__()
# handle input/output tensors in HWC format
self._add_input(
self.params["input_idx"],
self.params["input_dtype"],
self.params["input_c"],
self.params["input_w"],
self.params["input_h"],
)
self._add_input(
self.params["input2_idx"],
self.params["input2_dtype"],
self.params["input2_c"],
self.params["input2_w"],
self.params["input2_h"],
)
self._add_output(
self.params["output_idx"],
self.params["output_dtype"],
self.params["output_c"],
self.params["output_w"],
self.params["output_h"],
)
if None in default_params:
warnings.warn(f"parameters are not all set for op {self.params['op']}")
def get_macs(self) -> int:
p = self.params
return p["output_h"] * p["output_w"] * p["output_c"]
def generate_inference_str(self):
string = ""
params = self.params
string += f"add_fpreq({str(int(params['input_h']*params['input_w']*params['input_c']))}, "
string += f"{self._getBufferstr(params['input_buf_add'], params['input_buf_add_offset'])},"
string += f"{str(params['input_scale'])},{str(params['input_zero_point'])},"
string += f"{self._getBufferstr(params['input2_buf_add'], params['input2_buf_add_offset'])},"
string += f"{str(params['input2_scale'])},{str(params['input2_zero_point'])},"
string += f"{str(params['output_scale'])},{str(params['output_zero_point'])},"
string += f"{self._getBufferstr(params['output_buf_add'], params['output_buf_add_offset'])});\n"
return string