mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-18 08:44:11 +08:00
Merge pull request #424 from kurnianggoro:kcftutorial
This commit is contained in:
128
modules/tracking/samples/tutorial_customizing_cn_tracker.cpp
Normal file
128
modules/tracking/samples/tutorial_customizing_cn_tracker.cpp
Normal file
@@ -0,0 +1,128 @@
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include <opencv2/tracking.hpp>
|
||||
#include <opencv2/videoio.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <iostream>
|
||||
#include <cstring>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
// prototype of the functino for feature extractor
|
||||
void sobelExtractor(const Mat img, const Rect roi, Mat& feat);
|
||||
|
||||
int main( int argc, char** argv ){
|
||||
// show help
|
||||
if(argc<2){
|
||||
cout<<
|
||||
" Usage: tracker <video_name>\n"
|
||||
" examples:\n"
|
||||
" example_tracking_kcf Bolt/img/%04d.jpg\n"
|
||||
" example_tracking_kcf faceocc2.webm\n"
|
||||
<< endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// declares all required variables
|
||||
Rect2d roi;
|
||||
Mat frame;
|
||||
|
||||
//! [param]
|
||||
TrackerKCF::Params param;
|
||||
param.desc_pca = TrackerKCF::GRAY | TrackerKCF::CN;
|
||||
param.desc_npca = 0;
|
||||
param.compress_feature = true;
|
||||
param.compressed_size = 2;
|
||||
//! [param]
|
||||
|
||||
// create a tracker object
|
||||
//! [create]
|
||||
Ptr<TrackerKCF> tracker = TrackerKCF::createTracker(param);
|
||||
//! [create]
|
||||
|
||||
//! [setextractor]
|
||||
tracker->setFeatureExtractor(sobelExtractor);
|
||||
//! [setextractor]
|
||||
|
||||
// set input video
|
||||
std::string video = argv[1];
|
||||
VideoCapture cap(video);
|
||||
|
||||
// get bounding box
|
||||
cap >> frame;
|
||||
roi=selectROI("tracker",frame);
|
||||
|
||||
//quit if ROI was not selected
|
||||
if(roi.width==0 || roi.height==0)
|
||||
return 0;
|
||||
|
||||
// initialize the tracker
|
||||
tracker->init(frame,roi);
|
||||
|
||||
// perform the tracking process
|
||||
printf("Start the tracking process, press ESC to quit.\n");
|
||||
for ( ;; ){
|
||||
// get frame from the video
|
||||
cap >> frame;
|
||||
|
||||
// stop the program if no more images
|
||||
if(frame.rows==0 || frame.cols==0)
|
||||
break;
|
||||
|
||||
// update the tracking result
|
||||
tracker->update(frame,roi);
|
||||
|
||||
// draw the tracked object
|
||||
rectangle( frame, roi, Scalar( 255, 0, 0 ), 2, 1 );
|
||||
|
||||
// show image with the tracked object
|
||||
imshow("tracker",frame);
|
||||
|
||||
//quit on ESC button
|
||||
if(waitKey(1)==27)break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void sobelExtractor(const Mat img, const Rect roi, Mat& feat){
|
||||
Mat sobel[2];
|
||||
Mat patch;
|
||||
Rect region=roi;
|
||||
|
||||
//! [insideimage]
|
||||
// extract patch inside the image
|
||||
if(roi.x<0){region.x=0;region.width+=roi.x;}
|
||||
if(roi.y<0){region.y=0;region.height+=roi.y;}
|
||||
if(roi.x+roi.width>img.cols)region.width=img.cols-roi.x;
|
||||
if(roi.y+roi.height>img.rows)region.height=img.rows-roi.y;
|
||||
if(region.width>img.cols)region.width=img.cols;
|
||||
if(region.height>img.rows)region.height=img.rows;
|
||||
//! [insideimage]
|
||||
|
||||
patch=img(region).clone();
|
||||
cvtColor(patch,patch, CV_BGR2GRAY);
|
||||
|
||||
//! [padding]
|
||||
// add some padding to compensate when the patch is outside image border
|
||||
int addTop,addBottom, addLeft, addRight;
|
||||
addTop=region.y-roi.y;
|
||||
addBottom=(roi.height+roi.y>img.rows?roi.height+roi.y-img.rows:0);
|
||||
addLeft=region.x-roi.x;
|
||||
addRight=(roi.width+roi.x>img.cols?roi.width+roi.x-img.cols:0);
|
||||
|
||||
copyMakeBorder(patch,patch,addTop,addBottom,addLeft,addRight,BORDER_REPLICATE);
|
||||
//! [padding]
|
||||
|
||||
//! [sobel]
|
||||
Sobel(patch, sobel[0], CV_32F,1,0,1);
|
||||
Sobel(patch, sobel[1], CV_32F,0,1,1);
|
||||
|
||||
merge(sobel,2,feat);
|
||||
//! [sobel]
|
||||
|
||||
//! [postprocess]
|
||||
feat.convertTo(feat,CV_64F);
|
||||
feat=feat/255.0-0.5; // normalize to range -0.5 .. 0.5
|
||||
//! [postprocess]
|
||||
}
|
@@ -0,0 +1,87 @@
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include <opencv2/tracking.hpp>
|
||||
#include <opencv2/videoio.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <iostream>
|
||||
#include <cstring>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
int main( int argc, char** argv ){
|
||||
// show help
|
||||
//! [help]
|
||||
if(argc<2){
|
||||
cout<<
|
||||
" Usage: tracker <video_name>\n"
|
||||
" examples:\n"
|
||||
" example_tracking_kcf Bolt/img/%04d.jpg\n"
|
||||
" example_tracking_kcf faceocc2.webm\n"
|
||||
<< endl;
|
||||
return 0;
|
||||
}
|
||||
//! [help]
|
||||
|
||||
// declares all required variables
|
||||
//! [vars]
|
||||
Rect2d roi;
|
||||
Mat frame;
|
||||
//! [vars]
|
||||
|
||||
// create a tracker object
|
||||
//! [create]
|
||||
Ptr<Tracker> tracker = Tracker::create( "KCF" );
|
||||
//! [create]
|
||||
|
||||
// set input video
|
||||
//! [setvideo]
|
||||
std::string video = argv[1];
|
||||
VideoCapture cap(video);
|
||||
//! [setvideo]
|
||||
|
||||
// get bounding box
|
||||
//! [getframe]
|
||||
cap >> frame;
|
||||
//! [getframe]
|
||||
//! [selectroi]
|
||||
roi=selectROI("tracker",frame);
|
||||
//! [selectroi]
|
||||
|
||||
//quit if ROI was not selected
|
||||
if(roi.width==0 || roi.height==0)
|
||||
return 0;
|
||||
|
||||
// initialize the tracker
|
||||
//! [init]
|
||||
tracker->init(frame,roi);
|
||||
//! [init]
|
||||
|
||||
// perform the tracking process
|
||||
printf("Start the tracking process, press ESC to quit.\n");
|
||||
for ( ;; ){
|
||||
// get frame from the video
|
||||
cap >> frame;
|
||||
|
||||
// stop the program if no more images
|
||||
if(frame.rows==0 || frame.cols==0)
|
||||
break;
|
||||
|
||||
// update the tracking result
|
||||
//! [update]
|
||||
tracker->update(frame,roi);
|
||||
//! [update]
|
||||
|
||||
//! [visualization]
|
||||
// draw the tracked object
|
||||
rectangle( frame, roi, Scalar( 255, 0, 0 ), 2, 1 );
|
||||
|
||||
// show image with the tracked object
|
||||
imshow("tracker",frame);
|
||||
//! [visualization]
|
||||
|
||||
//quit on ESC button
|
||||
if(waitKey(1)==27)break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
99
modules/tracking/samples/tutorial_multitracker.cpp
Normal file
99
modules/tracking/samples/tutorial_multitracker.cpp
Normal file
@@ -0,0 +1,99 @@
|
||||
/*----------------------------------------------
|
||||
* Usage:
|
||||
* example_tracking_multitracker <video_name> [algorithm]
|
||||
*
|
||||
* example:
|
||||
* example_tracking_multitracker Bolt/img/%04d.jpg
|
||||
* example_tracking_multitracker faceocc2.webm KCF
|
||||
*--------------------------------------------------*/
|
||||
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include <opencv2/tracking.hpp>
|
||||
#include <opencv2/videoio.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <iostream>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
int main( int argc, char** argv ){
|
||||
// show help
|
||||
if(argc<2){
|
||||
cout<<
|
||||
" Usage: example_tracking_multitracker <video_name> [algorithm]\n"
|
||||
" examples:\n"
|
||||
" example_tracking_multitracker Bolt/img/%04d.jpg\n"
|
||||
" example_tracking_multitracker faceocc2.webm MEDIANFLOW\n"
|
||||
<< endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
// set the default tracking algorithm
|
||||
std::string trackingAlg = "KCF";
|
||||
|
||||
// set the tracking algorithm from parameter
|
||||
if(argc>2)
|
||||
trackingAlg = argv[2];
|
||||
|
||||
// create the tracker
|
||||
//! [create]
|
||||
MultiTracker trackers(trackingAlg);
|
||||
//! [create]
|
||||
|
||||
// container of the tracked objects
|
||||
//! [roi]
|
||||
vector<Rect2d> objects;
|
||||
//! [roi]
|
||||
|
||||
// set input video
|
||||
std::string video = argv[1];
|
||||
VideoCapture cap(video);
|
||||
|
||||
Mat frame;
|
||||
|
||||
// get bounding box
|
||||
cap >> frame;
|
||||
//! [selectmulti]
|
||||
selectROI("tracker",frame,objects);
|
||||
//! [selectmulti]
|
||||
|
||||
//quit when the tracked object(s) is not provided
|
||||
if(objects.size()<1)
|
||||
return 0;
|
||||
|
||||
// initialize the tracker
|
||||
//! [init]
|
||||
trackers.add(frame,objects);
|
||||
//! [init]
|
||||
|
||||
// do the tracking
|
||||
printf("Start the tracking process, press ESC to quit.\n");
|
||||
for ( ;; ){
|
||||
// get frame from the video
|
||||
cap >> frame;
|
||||
|
||||
// stop the program if no more images
|
||||
if(frame.rows==0 || frame.cols==0)
|
||||
break;
|
||||
|
||||
//update the tracking result
|
||||
//! [update]
|
||||
trackers.update(frame);
|
||||
//! [update]
|
||||
|
||||
//! [result]
|
||||
// draw the tracked object
|
||||
for(unsigned i=0;i<trackers.objects.size();i++)
|
||||
rectangle( frame, trackers.objects[i], Scalar( 255, 0, 0 ), 2, 1 );
|
||||
//! [result]
|
||||
|
||||
// show image with the tracked object
|
||||
imshow("tracker",frame);
|
||||
|
||||
//quit on ESC button
|
||||
if(waitKey(1)==27)break;
|
||||
}
|
||||
|
||||
}
|
@@ -0,0 +1,73 @@
|
||||
Customizing the CN Tracker {#tutorial_customizing_cn_tracker}
|
||||
======================
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
In this tutorial you will learn how to
|
||||
|
||||
- Set custom parameters for CN tracker.
|
||||
- Use your own feature-extractor function for the CN tracker.
|
||||
|
||||
This document contains tutorial for the @ref cv::TrackerKCF.
|
||||
|
||||
Source Code
|
||||
-----------
|
||||
|
||||
@includelineno tracking/samples/tutorial_customizing_cn_tracker.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
This part explains how to set custom parameters and use your own feature-extractor function for the CN tracker.
|
||||
If you need a more detailed information to use @ref cv::Tracker, please refer to @ref tutorial_introduction_to_tracker.
|
||||
|
||||
-# **Set Custom Parameters**
|
||||
|
||||
@snippet tracking/samples/tutorial_customizing_cn_tracker.cpp param
|
||||
|
||||
To set custom paramters, an object should be created. Each tracker algorithm has their own parameter format.
|
||||
So, in this case we should use parameter from @ref cv::TrackerKCF since we are interested in modifying the parameter of this tracker algorithm.
|
||||
|
||||
There are several parameters that can be configured as explained in @ref cv::TrackerKCF::Params.
|
||||
For this tutorial, we focussed on the feature extractor functions.
|
||||
|
||||
Several feature types can be used in @ref cv::TrackerKCF.
|
||||
In this case, the grayscale value (1 dimension) and color-names features (10 dimension),
|
||||
will be merged as 11 dimension feature and then compressed into 2 dimension as specified in the code.
|
||||
|
||||
If you want to use another type of pre-defined feature-extractor function, you can check in @ref cv::TrackerKCF::MODE.
|
||||
We will leave the non-compressed feature as 0 since we want to use a customized function.
|
||||
|
||||
-# **Using a custom function**
|
||||
|
||||
You can define your own feature-extractor function for the CN tracker.
|
||||
However, you need to take care about several things:
|
||||
- The extracted feature should have the same size as the size of the given bounding box (width and height).
|
||||
For the number of channels you can check the limitation in @ref cv::Mat.
|
||||
- You can only use features that can be compared using Euclidean distance.
|
||||
Features like local binary pattern (LBP) may not be suitable since it should be compared using Hamming distance.
|
||||
|
||||
Since the size of the extracted feature should be in the same size with the given bounding box,
|
||||
we need to take care whenever the given bounding box is partially out of range.
|
||||
In this case, we can copy part of image contained in the bounding box as shown in the snippet below.
|
||||
|
||||
@snippet tracking/samples/tutorial_customizing_cn_tracker.cpp insideimage
|
||||
|
||||
Whenever the copied image is smaller than the given bounding box,
|
||||
padding should be given to the sides where the bounding box is partially out of frame.
|
||||
|
||||
@snippet tracking/samples/tutorial_customizing_cn_tracker.cpp padding
|
||||
|
||||
-# **Defining the feature**
|
||||
|
||||
In this tutorial, the extracted feature is reponse of the Sobel filter in x and y direction.
|
||||
Those Sobel filter responses are concatenated, resulting a feature with 2 channels.
|
||||
|
||||
@snippet tracking/samples/tutorial_customizing_cn_tracker.cpp sobel
|
||||
|
||||
-# **Post processing**
|
||||
|
||||
Make sure to convert the feature into @ref cv::CV_64F data format and normalize its value with range -0.5 to 0.5
|
||||
|
||||
@snippet tracking/samples/tutorial_customizing_cn_tracker.cpp postprocess
|
@@ -0,0 +1,75 @@
|
||||
Introduction to OpenCV Tracker {#tutorial_introduction_to_tracker}
|
||||
==============================
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
In this tutorial you will learn how to
|
||||
|
||||
- Create a tracker object.
|
||||
- Use the roiSelector function to select a ROI from a given image.
|
||||
- Track a specific region in a given image.
|
||||
|
||||
Source Code
|
||||
-----------
|
||||
|
||||
@include tracking/samples/tutorial_introduction_to_tracker.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
-# **Set up the input video**
|
||||
|
||||
@snippet tracking/samples/tutorial_introduction_to_tracker.cpp help
|
||||
|
||||
In this tutorial, you can choose between video or list of images for the program input.
|
||||
As written in the help, you should specify the input video as parameter of the program.
|
||||
If you want to use image list as input, the image list should have formatted numbering
|
||||
as shown in help. In the help, it means that the image files are numbered with 4 digits
|
||||
(e.g. the file naming will be 0001.jpg, 0002.jpg, and so on).
|
||||
|
||||
You can find video samples in Itseez/opencv_extra/testdata/cv/tracking
|
||||
<https://github.com/Itseez/opencv_extra/tree/master/testdata/cv/tracking>
|
||||
|
||||
-# **Declares the required variables**
|
||||
|
||||
You need roi to record the bounding box of the tracked object. The value stored in this
|
||||
variable will be updated using the tracker object.
|
||||
|
||||
@snippet tracking/samples/tutorial_introduction_to_tracker.cpp vars
|
||||
|
||||
The frame variable is used to hold the image data from each frame of the input video or images list.
|
||||
|
||||
-# **Creating a tracker object**
|
||||
|
||||
@snippet tracking/samples/tutorial_introduction_to_tracker.cpp create
|
||||
|
||||
There are at least 5 types of tracker algorithms that can be used:
|
||||
+ MIL
|
||||
+ BOOSTING
|
||||
+ MEDIANFLOW
|
||||
+ TLD
|
||||
+ KCF
|
||||
|
||||
Each tracker algorithm has their own advantages and disadvantages, please refer the documentation of @ref cv::Tracker for more detailed information.
|
||||
|
||||
-# **Select the tracked object**
|
||||
|
||||
@snippet tracking/samples/tutorial_introduction_to_tracker.cpp selectroi
|
||||
|
||||
Using this function, you can select the bounding box of the tracked object using a GUI.
|
||||
With default parameters, the selection is started from the center of the box and a middle cross will be shown.
|
||||
See @ref cv::selectROI for more detailed information.
|
||||
|
||||
-# **Initializing the tracker object**
|
||||
|
||||
@snippet tracking/samples/tutorial_introduction_to_tracker.cpp init
|
||||
|
||||
Tracker algorithm should be initialized with the provided image data as well as the bounding box of the tracked object.
|
||||
Make sure that the bounding box is not valid (size more than zero) to avoid the initialization process failed.
|
||||
|
||||
-# **Update**
|
||||
|
||||
@snippet tracking/samples/tutorial_introduction_to_tracker.cpp update
|
||||
|
||||
This update function will perform the tracking process and pass the result to the roi variable.
|
49
modules/tracking/tutorials/tutorial_multitracker.markdown
Normal file
49
modules/tracking/tutorials/tutorial_multitracker.markdown
Normal file
@@ -0,0 +1,49 @@
|
||||
Using MultiTracker {#tutorial_multitracker}
|
||||
==================
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
In this tutorial you will learn how to
|
||||
|
||||
- Create a MultiTracker object.
|
||||
- Track several objects at once using the MultiTracker object.
|
||||
|
||||
Source Code
|
||||
-----------
|
||||
|
||||
@includelineno tracking/samples/tutorial_multitracker.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
-# **Create the MultiTracker object**
|
||||
|
||||
@snippet tracking/samples/tutorial_multitracker.cpp create
|
||||
|
||||
You can create the MultiTracker object and use the same tracking algorithm for all tracked object as shown in the snippet.
|
||||
If you want to use different type of tracking algorithm for each tracked object, you should define the tracking algorithm whenever a new object is added to the MultiTracker object.
|
||||
|
||||
-# **Selection of multiple objects**
|
||||
|
||||
@snippet tracking/samples/tutorial_multitracker.cpp selectmulti
|
||||
|
||||
You can use @ref cv::selectROI to select multiple objects with
|
||||
the result stored in a vector of @ref cv::Rect2d as shown in the code.
|
||||
You can also use another kind of selection scheme, please refer to @ref cv::selectROI for detailed information.
|
||||
|
||||
-# **Adding the tracked object to MultiTracker**
|
||||
|
||||
@snippet tracking/samples/tutorial_multitracker.cpp init
|
||||
|
||||
You can add all tracked objects at once to the MultiTracker as shown in the code.
|
||||
In this case, all objects will be tracked using same tracking algorithm as specified in decaration of MultiTracker object.
|
||||
If you want to use different tracker algorithms for each tracked object,
|
||||
You should add the tracked objects one by one and specify their tracking algorithm using the variant of @ref cv::MultiTracker::add.
|
||||
@sa cv::MultiTracker::add( const String& trackerType, const Mat& image, const Rect2d& boundingBox )
|
||||
|
||||
-# **Obtaining the result**
|
||||
|
||||
@snippet tracking/samples/tutorial_multitracker.cpp result
|
||||
|
||||
You can access the result from the public variable @ref cv::MultiTracker::objects provided by the MultiTracker class as shown in the code.
|
Reference in New Issue
Block a user