mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-20 12:55:15 +08:00
add a 'split' train method to datasets/lfw_benckmark
This commit is contained in:
@@ -78,7 +78,9 @@ int main(int argc, const char *argv[])
|
||||
{
|
||||
const char *keys =
|
||||
"{ help h usage ? | | show this message }"
|
||||
"{ path p |true| path to dataset (lfw2 folder) }";
|
||||
"{ path p |true| path to dataset (lfw2 folder) }"
|
||||
"{ train t |dev | train method: 'dev'(pairsDevTrain.txt) or 'split'(pairs.txt) }";
|
||||
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
string path(parser.get<string>("path"));
|
||||
if (parser.has("help") || path=="true")
|
||||
@@ -86,6 +88,7 @@ int main(int argc, const char *argv[])
|
||||
parser.printMessage();
|
||||
return -1;
|
||||
}
|
||||
string trainMethod(parser.get<string>("train"));
|
||||
|
||||
// These vectors hold the images and corresponding labels.
|
||||
vector<Mat> images;
|
||||
@@ -97,24 +100,12 @@ int main(int argc, const char *argv[])
|
||||
|
||||
unsigned int numSplits = dataset->getNumSplits();
|
||||
printf("splits number: %u\n", numSplits);
|
||||
printf("train size: %u\n", (unsigned int)dataset->getTrain().size());
|
||||
if (trainMethod == "dev")
|
||||
printf("train size: %u\n", (unsigned int)dataset->getTrain().size());
|
||||
else
|
||||
printf("train size: %u\n", (numSplits-1) * (unsigned int)dataset->getTest().size());
|
||||
printf("test size: %u\n", (unsigned int)dataset->getTest().size());
|
||||
|
||||
for (unsigned int i=0; i<dataset->getTrain().size(); ++i)
|
||||
{
|
||||
FR_lfwObj *example = static_cast<FR_lfwObj *>(dataset->getTrain()[i].get());
|
||||
|
||||
int currNum = getLabel(example->image1);
|
||||
Mat img = imread(path+example->image1, IMREAD_GRAYSCALE);
|
||||
images.push_back(img);
|
||||
labels.push_back(currNum);
|
||||
|
||||
currNum = getLabel(example->image2);
|
||||
img = imread(path+example->image2, IMREAD_GRAYSCALE);
|
||||
images.push_back(img);
|
||||
labels.push_back(currNum);
|
||||
}
|
||||
|
||||
// 2200 pairsDevTrain, first split: correct: 373, from: 600 -> 62.1667%
|
||||
Ptr<FaceRecognizer> model = createLBPHFaceRecognizer();
|
||||
// 2200 pairsDevTrain, first split: correct: correct: 369, from: 600 -> 61.5%
|
||||
@@ -122,14 +113,58 @@ int main(int argc, const char *argv[])
|
||||
// 2200 pairsDevTrain, first split: correct: 372, from: 600 -> 62%
|
||||
//Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
|
||||
|
||||
model->train(images, labels);
|
||||
//string saveModelPath = "face-rec-model.txt";
|
||||
//cout << "Saving the trained model to " << saveModelPath << endl;
|
||||
//model->save(saveModelPath);
|
||||
if (trainMethod == "dev") // train on personsDevTrain.txt
|
||||
{
|
||||
for (unsigned int i=0; i<dataset->getTrain().size(); ++i)
|
||||
{
|
||||
FR_lfwObj *example = static_cast<FR_lfwObj *>(dataset->getTrain()[i].get());
|
||||
|
||||
int currNum = getLabel(example->image1);
|
||||
Mat img = imread(path+example->image1, IMREAD_GRAYSCALE);
|
||||
images.push_back(img);
|
||||
labels.push_back(currNum);
|
||||
|
||||
currNum = getLabel(example->image2);
|
||||
img = imread(path+example->image2, IMREAD_GRAYSCALE);
|
||||
images.push_back(img);
|
||||
labels.push_back(currNum);
|
||||
}
|
||||
model->train(images, labels);
|
||||
//string saveModelPath = "face-rec-model.txt";
|
||||
//cout << "Saving the trained model to " << saveModelPath << endl;
|
||||
//model->save(saveModelPath);
|
||||
}
|
||||
|
||||
vector<double> p;
|
||||
for (unsigned int j=0; j<numSplits; ++j)
|
||||
{
|
||||
if (trainMethod == "split") // train on the remaining 9 splits from pairs.txt
|
||||
{
|
||||
images.clear();
|
||||
labels.clear();
|
||||
for (unsigned int j2=0; j2<numSplits; ++j2)
|
||||
{
|
||||
if (j==j2) continue; // skip test split for training
|
||||
|
||||
vector < Ptr<Object> > &curr = dataset->getTest(j2);
|
||||
for (unsigned int i=0; i<curr.size(); ++i)
|
||||
{
|
||||
FR_lfwObj *example = static_cast<FR_lfwObj *>(curr[i].get());
|
||||
|
||||
int currNum = getLabel(example->image1);
|
||||
Mat img = imread(path+example->image1, IMREAD_GRAYSCALE);
|
||||
images.push_back(img);
|
||||
labels.push_back(currNum);
|
||||
|
||||
currNum = getLabel(example->image2);
|
||||
img = imread(path+example->image2, IMREAD_GRAYSCALE);
|
||||
images.push_back(img);
|
||||
labels.push_back(currNum);
|
||||
}
|
||||
}
|
||||
model->train(images, labels);
|
||||
}
|
||||
|
||||
unsigned int incorrect = 0, correct = 0;
|
||||
vector < Ptr<Object> > &curr = dataset->getTest(j);
|
||||
for (unsigned int i=0; i<curr.size(); ++i)
|
||||
@@ -168,7 +203,7 @@ int main(int argc, const char *argv[])
|
||||
sigma += (*it - mu)*(*it - mu);
|
||||
}
|
||||
sigma = sqrt(sigma/p.size());
|
||||
double se = sigma/sqrt(p.size());
|
||||
double se = sigma/sqrt(double(p.size()));
|
||||
printf("estimated mean accuracy: %f and the standard error of the mean: %f\n", mu, se);
|
||||
|
||||
return 0;
|
||||
|
Reference in New Issue
Block a user