mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-20 21:40:49 +08:00
added benchmark for ar_hmdb
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
set(the_description "datasets framework")
|
||||
ocv_define_module(datasets opencv_core opencv_face)
|
||||
ocv_define_module(datasets opencv_core opencv_face opencv_ml opencv_flann)
|
||||
|
||||
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4267) # flann, Win64
|
||||
|
@@ -14,3 +14,16 @@ _`"HMDB: A Large Human Motion Database"`: http://serre-lab.clps.brown.edu/resour
|
||||
|
||||
3. To load data run: ./opencv/build/bin/example_datasets_ar_hmdb -p=/home/user/path_to_unpacked_folders/
|
||||
|
||||
Benchmark
|
||||
"""""""""
|
||||
|
||||
For this dataset was implemented benchmark, which gives accuracy: 0.107407 (using precomputed HOG/HOF "STIP" features from site, averaging for 3 splits)
|
||||
|
||||
To run this benchmark execute:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
./opencv/build/bin/example_datasets_ar_hmdb_benchmark -p=/home/user/path_to_unpacked_folders/
|
||||
|
||||
(precomputed features should be unpacked in the same folder: /home/user/path_to_unpacked_folders/hmdb51_org_stips/)
|
||||
|
||||
|
@@ -14,8 +14,14 @@ _`"Labeled Faces in the Wild"`: http://vis-www.cs.umass.edu/lfw/
|
||||
|
||||
3. To load data run: ./opencv/build/bin/example_datasets_fr_lfw -p=/home/user/path_to_unpacked_folder/lfw2/
|
||||
|
||||
.. note:: Benchmark
|
||||
Benchmark
|
||||
"""""""""
|
||||
|
||||
- For this dataset was implemented benchmark, which gives accuracy: 0.623833 +- 0.005223 (train split: pairsDevTrain.txt, dataset: lfwa)
|
||||
- To run this benchmark execute: ./opencv/build/bin/example_datasets_fr_lfw_benchmark -p=/home/user/path_to_unpacked_folder/lfw2/
|
||||
For this dataset was implemented benchmark, which gives accuracy: 0.623833 +- 0.005223 (train split: pairsDevTrain.txt, dataset: lfwa)
|
||||
|
||||
To run this benchmark execute:
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
./opencv/build/bin/example_datasets_fr_lfw_benchmark -p=/home/user/path_to_unpacked_folder/lfw2/
|
||||
|
||||
|
276
modules/datasets/samples/ar_hmdb_benchmark.cpp
Normal file
276
modules/datasets/samples/ar_hmdb_benchmark.cpp
Normal file
@@ -0,0 +1,276 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2014, Itseez Inc, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Itseez Inc or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "opencv2/datasets/ar_hmdb.hpp"
|
||||
#include "opencv2/datasets/util.hpp"
|
||||
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/flann.hpp>
|
||||
#include <opencv2/ml.hpp>
|
||||
|
||||
#include <cstdio>
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::datasets;
|
||||
using namespace cv::flann;
|
||||
using namespace cv::ml;
|
||||
|
||||
unsigned int getNumFiles(vector< Ptr<Object> > &curr);
|
||||
unsigned int getNumFiles(vector< Ptr<Object> > &curr)
|
||||
{
|
||||
unsigned int numFiles = 0;
|
||||
for (unsigned int i=0; i<curr.size(); ++i)
|
||||
{
|
||||
AR_hmdbObj *example = static_cast<AR_hmdbObj *>(curr[i].get());
|
||||
vector<string> &videoNames = example->videoNames;
|
||||
for (vector<string>::iterator it=videoNames.begin(); it!=videoNames.end(); ++it)
|
||||
{
|
||||
numFiles++;
|
||||
}
|
||||
}
|
||||
|
||||
return numFiles;
|
||||
}
|
||||
|
||||
void fillData(const string &path, vector< Ptr<Object> > &curr, Index &flann_index, Mat1f &data, Mat1i &labels);
|
||||
void fillData(const string &path, vector< Ptr<Object> > &curr, Index &flann_index, Mat1f &data, Mat1i &labels)
|
||||
{
|
||||
const unsigned int descriptorNum = 162;
|
||||
Mat1f sample(1, descriptorNum);
|
||||
Mat1i nresps(1, 1);
|
||||
Mat1f dists(1, 1);
|
||||
|
||||
unsigned int numFiles = 0;
|
||||
for (unsigned int i=0; i<curr.size(); ++i)
|
||||
{
|
||||
AR_hmdbObj *example = static_cast<AR_hmdbObj *>(curr[i].get());
|
||||
vector<string> &videoNames = example->videoNames;
|
||||
for (vector<string>::iterator it=videoNames.begin(); it!=videoNames.end(); ++it)
|
||||
{
|
||||
string featuresFile = *it + ".txt";
|
||||
string featuresFullPath = path + "hmdb51_org_stips/" + example->name + "/" + featuresFile;
|
||||
|
||||
ifstream infile(featuresFullPath.c_str());
|
||||
string line;
|
||||
// skip header
|
||||
for (unsigned int j=0; j<3; ++j)
|
||||
{
|
||||
getline(infile, line);
|
||||
}
|
||||
while (getline(infile, line))
|
||||
{
|
||||
// 7 skip, hog+hof: 72+90 read
|
||||
vector<string> elems;
|
||||
split(line, elems, '\t');
|
||||
|
||||
for (unsigned int j=0; j<descriptorNum; ++j)
|
||||
{
|
||||
sample(0, j) = (float)atof(elems[j+7].c_str());
|
||||
}
|
||||
|
||||
flann_index.knnSearch(sample, nresps, dists, 1, SearchParams());
|
||||
data(numFiles, nresps(0, 0)) ++;
|
||||
}
|
||||
labels(numFiles, 0) = i;
|
||||
numFiles++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
const char *keys =
|
||||
"{ help h usage ? | | show this message }"
|
||||
"{ path p |true| path to dataset }";
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
string path(parser.get<string>("path"));
|
||||
if (parser.has("help") || path=="true")
|
||||
{
|
||||
parser.printMessage();
|
||||
return -1;
|
||||
}
|
||||
|
||||
// loading dataset
|
||||
Ptr<AR_hmdb> dataset = AR_hmdb::create();
|
||||
dataset->load(path);
|
||||
|
||||
int numSplits = dataset->getNumSplits();
|
||||
printf("splits number: %u\n", numSplits);
|
||||
|
||||
|
||||
const unsigned int descriptorNum = 162;
|
||||
const unsigned int clusterNum = 4000;
|
||||
const unsigned int sampleNum = 5613856; // max for all 3 splits
|
||||
|
||||
vector<double> res;
|
||||
for (int currSplit=0; currSplit<numSplits; ++currSplit)
|
||||
{
|
||||
|
||||
Mat1f samples(sampleNum, descriptorNum);
|
||||
unsigned int currSample = 0;
|
||||
vector< Ptr<Object> > &curr = dataset->getTrain(currSplit);
|
||||
unsigned int numTrainFiles = getNumFiles(curr);
|
||||
unsigned int numFeatures = 0;
|
||||
for (unsigned int i=0; i<curr.size(); ++i)
|
||||
{
|
||||
AR_hmdbObj *example = static_cast<AR_hmdbObj *>(curr[i].get());
|
||||
vector<string> &videoNames = example->videoNames;
|
||||
for (vector<string>::iterator it=videoNames.begin(); it!=videoNames.end(); ++it)
|
||||
{
|
||||
string featuresFile = *it + ".txt";
|
||||
string featuresFullPath = path + "hmdb51_org_stips/" + example->name + "/" + featuresFile;
|
||||
|
||||
ifstream infile(featuresFullPath.c_str());
|
||||
string line;
|
||||
// skip header
|
||||
for (unsigned int j=0; j<3; ++j)
|
||||
{
|
||||
getline(infile, line);
|
||||
}
|
||||
while (getline(infile, line))
|
||||
{
|
||||
numFeatures++;
|
||||
if (currSample < sampleNum)
|
||||
{
|
||||
// 7 skip, hog+hof: 72+90 read
|
||||
vector<string> elems;
|
||||
split(line, elems, '\t');
|
||||
|
||||
for (unsigned int j=0; j<descriptorNum; ++j)
|
||||
{
|
||||
samples(currSample, j) = (float)atof(elems[j+7].c_str());
|
||||
}
|
||||
currSample++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("split %u, train features number: %u, samples number: %u\n", currSplit, numFeatures, currSample);
|
||||
|
||||
// clustering
|
||||
Mat1f centers(clusterNum, descriptorNum);
|
||||
::cvflann::KMeansIndexParams kmean_params;
|
||||
unsigned int resultClusters = hierarchicalClustering< L2<float> >(samples, centers, kmean_params);
|
||||
if (resultClusters < clusterNum)
|
||||
{
|
||||
centers = centers.rowRange(Range(0, resultClusters));
|
||||
}
|
||||
Index flann_index(centers, KDTreeIndexParams());
|
||||
printf("resulted clusters number: %u\n", resultClusters);
|
||||
|
||||
|
||||
Mat1f trainData(numTrainFiles, resultClusters);
|
||||
Mat1i trainLabels(numTrainFiles, 1);
|
||||
|
||||
for (unsigned int i=0; i<numTrainFiles; ++i)
|
||||
{
|
||||
for (unsigned int j=0; j<resultClusters; ++j)
|
||||
{
|
||||
trainData(i, j) = 0;
|
||||
}
|
||||
}
|
||||
|
||||
printf("calculating train histograms\n");
|
||||
fillData(path, curr, flann_index, trainData, trainLabels);
|
||||
|
||||
printf("train svm\n");
|
||||
SVM::Params params;
|
||||
params.svmType = SVM::C_SVC;
|
||||
params.kernelType = SVM::POLY; //SVM::RBF;
|
||||
params.degree = 0.5;
|
||||
params.gamma = 1;
|
||||
params.coef0 = 1;
|
||||
params.C = 1;
|
||||
params.nu = 0.5;
|
||||
params.p = 0;
|
||||
params.termCrit = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, 0.01);
|
||||
Ptr<SVM> svm = SVM::create(params);
|
||||
svm->train(trainData, ROW_SAMPLE, trainLabels);
|
||||
|
||||
// prepare to predict
|
||||
curr = dataset->getTest(currSplit);
|
||||
unsigned int numTestFiles = getNumFiles(curr);
|
||||
Mat1f testData(numTestFiles, resultClusters);
|
||||
Mat1i testLabels(numTestFiles, 1); // ground true
|
||||
|
||||
for (unsigned int i=0; i<numTestFiles; ++i)
|
||||
{
|
||||
for (unsigned int j=0; j<resultClusters; ++j)
|
||||
{
|
||||
testData(i, j) = 0;
|
||||
}
|
||||
}
|
||||
|
||||
printf("calculating test histograms\n");
|
||||
fillData(path, curr, flann_index, testData, testLabels);
|
||||
|
||||
printf("predicting\n");
|
||||
Mat1f testPredicted(numTestFiles, 1);
|
||||
svm->predict(testData, testPredicted);
|
||||
|
||||
unsigned int correct = 0;
|
||||
for (unsigned int i=0; i<numTestFiles; ++i)
|
||||
{
|
||||
if ((int)testPredicted(i, 0) == testLabels(i, 0))
|
||||
{
|
||||
correct++;
|
||||
}
|
||||
}
|
||||
double accuracy = 1.0*correct/numTestFiles;
|
||||
printf("correctly recognized actions: %f\n", accuracy);
|
||||
res.push_back(accuracy);
|
||||
|
||||
}
|
||||
|
||||
double accuracy = 0.0;
|
||||
for (unsigned int i=0; i<res.size(); ++i)
|
||||
{
|
||||
accuracy += res[i];
|
||||
}
|
||||
printf("average: %f\n", accuracy/res.size());
|
||||
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user