mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-18 08:44:11 +08:00
Add HDF module & implement HDF version 5 I/O.
This commit is contained in:
@@ -53,3 +53,5 @@ $ cmake -D OPENCV_EXTRA_MODULES_PATH=<opencv_contrib>/modules -D BUILD_opencv_re
|
||||
22. **opencv_xphoto**: Additional photo processing algorithms: Color balance / Denoising / Inpainting.
|
||||
|
||||
23. **opencv_stereo**: Stereo Correspondence done with different descriptors: Census / CS-Census / MCT / BRIEF / MV.
|
||||
|
||||
24. **opencv_hdf**: Hierarchical Data Format I/O.
|
||||
|
21
modules/hdf/CMakeLists.txt
Normal file
21
modules/hdf/CMakeLists.txt
Normal file
@@ -0,0 +1,21 @@
|
||||
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} ${CMAKE_CURRENT_SOURCE_DIR})
|
||||
|
||||
find_package(HDF5)
|
||||
if(HDF5_FOUND)
|
||||
set(HAVE_HDF5 1)
|
||||
message(STATUS "HDF5: YES")
|
||||
else()
|
||||
ocv_module_disable(hdf)
|
||||
message(STATUS "HDF5: NO")
|
||||
endif()
|
||||
|
||||
if(${HDF5_FOUND})
|
||||
include_directories(${HDF5_INCLUDE_DIRS})
|
||||
endif()
|
||||
|
||||
set(the_description "Hierarchical Data Format I/O")
|
||||
ocv_define_module(hdf opencv_core WRAP python)
|
||||
|
||||
if(${HDF5_FOUND})
|
||||
target_link_libraries(opencv_hdf ${HDF5_LIBRARIES})
|
||||
endif()
|
4
modules/hdf/README.md
Normal file
4
modules/hdf/README.md
Normal file
@@ -0,0 +1,4 @@
|
||||
HDF I/O
|
||||
============================================================
|
||||
|
||||
The module contains I/O routines for Hierarchical Data Formats.
|
BIN
modules/hdf/doc/pics/hdfview_demo.gif
Normal file
BIN
modules/hdf/doc/pics/hdfview_demo.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 34 KiB |
54
modules/hdf/include/opencv2/hdf.hpp
Normal file
54
modules/hdf/include/opencv2/hdf.hpp
Normal file
@@ -0,0 +1,54 @@
|
||||
/*********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright (c) 2015
|
||||
* Balint Cristian <cristian dot balint at gmail dot com>
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above
|
||||
* copyright notice, this list of conditions and the following
|
||||
* disclaimer in the documentation and/or other materials provided
|
||||
* with the distribution.
|
||||
* * Neither the name of the copyright holders nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*********************************************************************/
|
||||
|
||||
#ifndef __OPENCV_HDF_HPP__
|
||||
#define __OPENCV_HDF_HPP__
|
||||
|
||||
#include "opencv2/hdf/hdf5.hpp"
|
||||
|
||||
/** @defgroup hdf Hierarchical Data Format I/O routines
|
||||
|
||||
This module provides storage routines for Hierarchical Data Format objects.
|
||||
|
||||
@{
|
||||
@defgroup hdf5 Hierarchical Data Format version 5
|
||||
|
||||
Hierarchical Data Format version 5
|
||||
--------------------------------------------------------
|
||||
|
||||
|
||||
@}
|
||||
*/
|
||||
|
||||
#endif
|
681
modules/hdf/include/opencv2/hdf/hdf5.hpp
Normal file
681
modules/hdf/include/opencv2/hdf/hdf5.hpp
Normal file
@@ -0,0 +1,681 @@
|
||||
/*********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright (c) 2015
|
||||
* Balint Cristian <cristian dot balint at gmail dot com>
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above
|
||||
* copyright notice, this list of conditions and the following
|
||||
* disclaimer in the documentation and/or other materials provided
|
||||
* with the distribution.
|
||||
* * Neither the name of the copyright holders nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*********************************************************************/
|
||||
|
||||
#ifndef __OPENCV_HDF5_HPP__
|
||||
#define __OPENCV_HDF5_HPP__
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include <hdf5.h>
|
||||
|
||||
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace hdf
|
||||
{
|
||||
|
||||
//! @addtogroup hdf5
|
||||
//! @{
|
||||
|
||||
|
||||
/** @brief Hierarchical Data Format version 5 interface.
|
||||
|
||||
Notice that module is compiled only when hdf5 is correctly installed.
|
||||
|
||||
*/
|
||||
class CV_EXPORTS_W HDF5
|
||||
{
|
||||
public:
|
||||
|
||||
CV_WRAP enum
|
||||
{
|
||||
H5_UNLIMITED = -1, H5_NONE = -1, H5_GETDIMS = 100, H5_GETMAXDIMS = 101,
|
||||
};
|
||||
|
||||
virtual ~HDF5() {}
|
||||
|
||||
/** @brief Close and release hdf5 object.
|
||||
*/
|
||||
CV_WRAP virtual void close( ) = 0;
|
||||
|
||||
/** @brief Create a group.
|
||||
@param grlabel specify the hdf5 group label.
|
||||
|
||||
Create a hdf5 group.
|
||||
|
||||
@note Groups are useful for better organise multiple datasets. It is possible to create subgroups within any group.
|
||||
Existence of a particular group can be checked using hlexists(). In case of subgroups label would be e.g: 'Group1/SubGroup1'
|
||||
where SubGroup1 is within the root group Group1.
|
||||
|
||||
- In this example Group1 will have one subgrup labeled SubGroup1:
|
||||
@code{.cpp}
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// create Group1 if does not exists
|
||||
if ( ! h5io->hlexists( "Group1" ) )
|
||||
h5io->grcreate( "Group1" );
|
||||
else
|
||||
printf("Group1 already created, skipping\n" );
|
||||
// create SubGroup1 if does not exists
|
||||
if ( ! h5io->hlexists( "Group1/SubGroup1" ) )
|
||||
h5io->grcreate( "Group1/SubGroup1" );
|
||||
else
|
||||
printf("SubGroup1 already created, skipping\n" );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
|
||||
@note When a dataset is created with dscreate() or kpcreate() it can be created right within a group by specifying
|
||||
full path within the label, in our example would be: 'Group1/SubGroup1/MyDataSet'. It is not thread safe.
|
||||
*/
|
||||
CV_WRAP virtual void grcreate( String grlabel ) = 0;
|
||||
|
||||
/** @brief Check if label exists or not.
|
||||
@param label specify the hdf5 dataset label.
|
||||
|
||||
Returns **true** if dataset exists, and **false** if does not.
|
||||
|
||||
@note Checks if dataset, group or other object type (hdf5 link) exists under the label name. It is thread safe.
|
||||
*/
|
||||
CV_WRAP virtual bool hlexists( String label ) const = 0;
|
||||
|
||||
/* @overload */
|
||||
CV_WRAP virtual void dscreate( const int rows, const int cols, const int type,
|
||||
String dslabel, const int compresslevel = HDF5::H5_NONE,
|
||||
const vector<int>& dims_chunks = vector<int>() ) const = 0;
|
||||
/** @brief Create and allocate storage for two dimensional single or multi channel dataset.
|
||||
@param rows declare amount of rows
|
||||
@param cols declare amount of cols
|
||||
@param type type to be used
|
||||
@param dslabel specify the hdf5 dataset label, any existing dataset with the same label will be overwritten.
|
||||
@param compresslevel specify the compression level 0-9 to be used, by default H5_NONE means none at all.
|
||||
@param dims_chunks each array member specify chunking sizes to be used for block i/o,
|
||||
by default NULL means none at all.
|
||||
|
||||
@note If the dataset already exists an exception will be thrown.
|
||||
|
||||
- Existence of the dataset can be checked using hlexists(), see in this example:
|
||||
@code{.cpp}
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// create space for 100x50 CV_64FC2 matrix
|
||||
if ( ! h5io->hlexists( "hilbert" ) )
|
||||
h5io->dscreate( 100, 50, CV_64FC2, "hilbert" );
|
||||
else
|
||||
printf("DS already created, skipping\n" );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
|
||||
@note Activating compression requires internal chunking. Chunking can significantly improve access
|
||||
speed booth at read or write time especially for windowed access logic that shifts offset inside dataset.
|
||||
If no custom chunking is specified default one will be invoked by the size of **whole** dataset
|
||||
as single big chunk of data.
|
||||
|
||||
- See example of level 9 compression using internal default chunking:
|
||||
@code{.cpp}
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// create level 9 compressed space for CV_64FC2 matrix
|
||||
if ( ! h5io->hlexists( "hilbert", 9 ) )
|
||||
h5io->dscreate( 100, 50, CV_64FC2, "hilbert", 9 );
|
||||
else
|
||||
printf("DS already created, skipping\n" );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
|
||||
@note A value of H5_UNLIMITED for **rows** or **cols** or booth means **unlimited** data on the specified dimension,
|
||||
thus is possible to expand anytime such dataset on row, col or booth directions. Presence of H5_UNLIMITED on any
|
||||
dimension **require** to define custom chunking. No default chunking will be defined in unlimited scenario since
|
||||
default size on that dimension will be zero, and will grow once dataset is written. Writing into dataset that have
|
||||
H5_UNLIMITED on some of its dimension requires dsinsert() that allow growth on unlimited dimension instead of dswrite()
|
||||
that allows to write only in predefined data space.
|
||||
|
||||
- Example below shows no compression but unlimited dimension on cols using 100x100 internal chunking:
|
||||
@code{.cpp}
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// create level 9 compressed space for CV_64FC2 matrix
|
||||
int chunks[2] = { 100, 100 };
|
||||
h5io->dscreate( 100, cv::hdf::HDF5::H5_UNLIMITED, CV_64FC2, "hilbert", cv::hdf::HDF5::H5_NONE, chunks );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
|
||||
@note It is **not** thread safe, it must be called only once at dataset creation otherwise exception will occur.
|
||||
Multiple datasets inside single hdf5 file is allowed.
|
||||
*/
|
||||
CV_WRAP virtual void dscreate( const int rows, const int cols, const int type,
|
||||
String dslabel, const int compresslevel = HDF5::H5_NONE, const int* dims_chunks = NULL ) const = 0;
|
||||
|
||||
/* @overload */
|
||||
CV_WRAP virtual void dscreate( const vector<int>& sizes, const int type, String dslabel,
|
||||
const int compresslevel = HDF5::H5_NONE, const vector<int>& dims_chunks = vector<int>() ) const = 0;
|
||||
/** @brief Create and allocate storage for n-dimensional dataset, single or mutichannel type.
|
||||
@param n_dims declare number of dimensions
|
||||
@param sizes array containing sizes for each dimensions
|
||||
@param type type to be used
|
||||
@param dslabel specify the hdf5 dataset label, any existing dataset with the same label will be overwritten.
|
||||
@param compresslevel specify the compression level 0-9 to be used, by default H5_NONE means none at all.
|
||||
@param dims_chunks each array member specify chunking sizes to be used for block i/o,
|
||||
by default NULL means none at all.
|
||||
@note If the dataset already exists an exception will be thrown. Existence of the dataset can be checked
|
||||
using hlexists().
|
||||
|
||||
- See example below that creates a 6 dimensional storage space:
|
||||
@code{.cpp}
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// create space for 6 dimensional CV_64FC2 matrix
|
||||
if ( ! h5io->hlexists( "nddata" ) )
|
||||
int n_dims = 5;
|
||||
int dsdims[n_dims] = { 100, 100, 20, 10, 5, 5 };
|
||||
h5io->dscreate( n_dims, sizes, CV_64FC2, "nddata" );
|
||||
else
|
||||
printf("DS already created, skipping\n" );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
|
||||
@note Activating compression requires internal chunking. Chunking can significantly improve access
|
||||
speed booth at read or write time especially for windowed access logic that shifts offset inside dataset.
|
||||
If no custom chunking is specified default one will be invoked by the size of **whole** dataset
|
||||
as single big chunk of data.
|
||||
|
||||
- See example of level 0 compression (shallow) using chunking against first
|
||||
dimension, thus storage will consists by 100 chunks of data:
|
||||
@code{.cpp}
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// create space for 6 dimensional CV_64FC2 matrix
|
||||
if ( ! h5io->hlexists( "nddata" ) )
|
||||
int n_dims = 5;
|
||||
int dsdims[n_dims] = { 100, 100, 20, 10, 5, 5 };
|
||||
int chunks[n_dims] = { 1, 100, 20, 10, 5, 5 };
|
||||
h5io->dscreate( n_dims, dsdims, CV_64FC2, "nddata", 0, chunks );
|
||||
else
|
||||
printf("DS already created, skipping\n" );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
|
||||
@note A value of H5_UNLIMITED inside the **sizes** array means **unlimited** data on that dimension, thus is
|
||||
possible to expand anytime such dataset on those unlimited directions. Presence of H5_UNLIMITED on any dimension
|
||||
**require** to define custom chunking. No default chunking will be defined in unlimited scenario since default size
|
||||
on that dimension will be zero, and will grow once dataset is written. Writing into dataset that have H5_UNLIMITED on
|
||||
some of its dimension requires dsinsert() instead of dswrite() that allow growth on unlimited dimension instead of
|
||||
dswrite() that allows to write only in predefined data space.
|
||||
|
||||
- Example below shows a 3 dimensional dataset using no compression with all unlimited sizes and one unit chunking:
|
||||
@code{.cpp}
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
int n_dims = 3;
|
||||
int chunks[n_dims] = { 1, 1, 1 };
|
||||
int dsdims[n_dims] = { cv::hdf::HDF5::H5_UNLIMITED, cv::hdf::HDF5::H5_UNLIMITED, cv::hdf::HDF5::H5_UNLIMITED };
|
||||
h5io->dscreate( n_dims, dsdims, CV_64FC2, "nddata", cv::hdf::HDF5::H5_NONE, chunks );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
*/
|
||||
CV_WRAP virtual void dscreate( const int n_dims, const int* sizes, const int type,
|
||||
String dslabel, const int compresslevel = HDF5::H5_NONE, const int* dims_chunks = NULL ) const = 0;
|
||||
|
||||
/** @brief Fetch dataset sizes
|
||||
@param dslabel specify the hdf5 dataset label to be measured.
|
||||
@param dims_flag will fetch dataset dimensions on H5_GETDIMS, and dataset maximum dimensions on H5_GETMAXDIMS.
|
||||
|
||||
Returns vector object containing sizes of dataset on each dimensions.
|
||||
|
||||
@note Resulting vector size will match the amount of dataset dimensions. By default H5_GETDIMS will return
|
||||
actual dataset dimensions. Using H5_GETMAXDIM flag will get maximum allowed dimension which normally match
|
||||
actual dataset dimension but can hold H5_UNLIMITED value if dataset was prepared in **unlimited** mode on
|
||||
some of its dimension. It can be useful to check existing dataset dimensions before overwrite it as whole or subset.
|
||||
Trying to write with oversized source data into dataset target will thrown exception.
|
||||
*/
|
||||
CV_WRAP virtual vector<int> dsgetsize( String dslabel, int dims_flag = HDF5::H5_GETDIMS ) const = 0;
|
||||
|
||||
/** @brief Fetch dataset type
|
||||
@param dslabel specify the hdf5 dataset label to be checked.
|
||||
|
||||
Returns the stored matrix type. This is an identifier compatible with the CvMat type system,
|
||||
like e.g. CV_16SC5 (16-bit signed 5-channel array), and so on.
|
||||
|
||||
@note Result can be parsed with CV_MAT_CN() to obtain amount of channels and CV_MAT_DEPTH() to obtain native cvdata type.
|
||||
It is thread safe.
|
||||
*/
|
||||
CV_WRAP virtual int dsgettype( String dslabel ) const = 0;
|
||||
|
||||
/* @overload */
|
||||
CV_WRAP virtual void dswrite( InputArray Array, String dslabel,
|
||||
const vector<int>& dims_offset = vector<int>(),
|
||||
const vector<int>& dims_counts = vector<int>() ) const = 0;
|
||||
/** @brief Write or overwrite a Mat object into specified dataset of hdf5 file.
|
||||
@param Array specify Mat data array to be written.
|
||||
@param dslabel specify the target hdf5 dataset label.
|
||||
@param dims_offset each array member specify the offset location
|
||||
over dataset's each dimensions from where InputArray will be (over)written into dataset.
|
||||
@param dims_counts each array member specify the amount of data over dataset's
|
||||
each dimensions from InputArray that will be written into dataset.
|
||||
|
||||
Writes Mat object into targeted dataset.
|
||||
|
||||
@note If dataset is not created and does not exist it will be created **automatically**. Only Mat is supported and
|
||||
it must to be **continuous**. It is thread safe but it is recommended that writes to happen over separate non overlapping
|
||||
regions. Multiple datasets can be written inside single hdf5 file.
|
||||
|
||||
- Example below writes a 100x100 CV_64FC2 matrix into a dataset. No dataset precreation required. If routine
|
||||
is called multiple times dataset will be just overwritten:
|
||||
@code{.cpp}
|
||||
// dual channel hilbert matrix
|
||||
cv::Mat H(100, 100, CV_64FC2);
|
||||
for(int i = 0; i < H.rows; i++)
|
||||
for(int j = 0; j < H.cols; j++)
|
||||
{
|
||||
H.at<cv::Vec2d>(i,j)[0] = 1./(i+j+1);
|
||||
H.at<cv::Vec2d>(i,j)[1] = -1./(i+j+1);
|
||||
count++;
|
||||
}
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// write / overwrite dataset
|
||||
h5io->dswrite( H, "hilbert" );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
|
||||
- Example below writes a smaller 50x100 matrix into 100x100 compressed space optimised by two 50x100 chunks.
|
||||
Matrix is written twice into first half (0->50) and second half (50->100) of data space using offset.
|
||||
@code{.cpp}
|
||||
// dual channel hilbert matrix
|
||||
cv::Mat H(50, 100, CV_64FC2);
|
||||
for(int i = 0; i < H.rows; i++)
|
||||
for(int j = 0; j < H.cols; j++)
|
||||
{
|
||||
H.at<cv::Vec2d>(i,j)[0] = 1./(i+j+1);
|
||||
H.at<cv::Vec2d>(i,j)[1] = -1./(i+j+1);
|
||||
count++;
|
||||
}
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// optimise dataset by two chunks
|
||||
int chunks[2] = { 50, 100 };
|
||||
// create 100x100 CV_64FC2 compressed space
|
||||
h5io->dscreate( 100, 100, CV_64FC2, "hilbert", 9, chunks );
|
||||
// write into first half
|
||||
int offset1[2] = { 0, 0 };
|
||||
h5io->dswrite( H, "hilbert", offset1 );
|
||||
// write into second half
|
||||
int offset2[2] = { 50, 0 };
|
||||
h5io->dswrite( H, "hilbert", offset2 );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
*/
|
||||
CV_WRAP virtual void dswrite( InputArray Array, String dslabel,
|
||||
const int* dims_offset = NULL, const int* dims_counts = NULL ) const = 0;
|
||||
|
||||
/* @overload */
|
||||
CV_WRAP virtual void dsinsert( InputArray Array, String dslabel,
|
||||
const vector<int>& dims_offset = vector<int>(),
|
||||
const vector<int>& dims_counts = vector<int>() ) const = 0;
|
||||
/** @brief Insert or overwrite a Mat object into specified dataset and autoexpand dataset size if **unlimited** property allows.
|
||||
@param Array specify Mat data array to be written.
|
||||
@param dslabel specify the target hdf5 dataset label.
|
||||
@param dims_offset each array member specify the offset location
|
||||
over dataset's each dimensions from where InputArray will be (over)written into dataset.
|
||||
@param dims_counts each array member specify the amount of data over dataset's
|
||||
each dimensions from InputArray that will be written into dataset.
|
||||
|
||||
Writes Mat object into targeted dataset and **autoexpand** dataset dimension if allowed.
|
||||
|
||||
@note Unlike dswrite(), datasets are **not** created **automatically**. Only Mat is supported and it must to be **continuous**.
|
||||
If dsinsert() happen over outer regions of dataset dimensions and on that dimension of dataset is in **unlimited** mode then
|
||||
dataset is expanded, otherwise exception is thrown. To create datasets with **unlimited** property on specific or more
|
||||
dimensions see dscreate() and the optional H5_UNLIMITED flag at creation time. It is not thread safe over same dataset
|
||||
but multiple datasets can be merged inside single hdf5 file.
|
||||
|
||||
- Example below creates **unlimited** rows x 100 cols and expand rows 5 times with dsinsert() using single 100x100 CV_64FC2
|
||||
over the dataset. Final size will have 5x100 rows and 100 cols, reflecting H matrix five times over row's span. Chunks size is
|
||||
100x100 just optimized against the H matrix size having compression disabled. If routine is called multiple times dataset will be
|
||||
just overwritten:
|
||||
@code{.cpp}
|
||||
// dual channel hilbert matrix
|
||||
cv::Mat H(50, 100, CV_64FC2);
|
||||
for(int i = 0; i < H.rows; i++)
|
||||
for(int j = 0; j < H.cols; j++)
|
||||
{
|
||||
H.at<cv::Vec2d>(i,j)[0] = 1./(i+j+1);
|
||||
H.at<cv::Vec2d>(i,j)[1] = -1./(i+j+1);
|
||||
count++;
|
||||
}
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// optimise dataset by chunks
|
||||
int chunks[2] = { 100, 100 };
|
||||
// create Unlimited x 100 CV_64FC2 space
|
||||
h5io->dscreate( cv::hdf::HDF5::H5_UNLIMITED, 100, CV_64FC2, "hilbert", cv::hdf::HDF5::H5_NONE, chunks );
|
||||
// write into first half
|
||||
int offset[2] = { 0, 0 };
|
||||
for ( int t = 0; t < 5; t++ )
|
||||
{
|
||||
offset[0] += 100 * t;
|
||||
h5io->dsinsert( H, "hilbert", offset );
|
||||
}
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
*/
|
||||
CV_WRAP virtual void dsinsert( InputArray Array, String dslabel,
|
||||
const int* dims_offset = NULL, const int* dims_counts = NULL ) const = 0;
|
||||
|
||||
|
||||
/* @overload */
|
||||
CV_WRAP virtual void dsread( OutputArray Array, String dslabel,
|
||||
const vector<int>& dims_offset = vector<int>(),
|
||||
const vector<int>& dims_counts = vector<int>() ) const = 0;
|
||||
/** @brief Read specific dataset from hdf5 file into Mat object.
|
||||
@param Array Mat container where data reads will be returned.
|
||||
@param dslabel specify the source hdf5 dataset label.
|
||||
@param dims_offset each array member specify the offset location over
|
||||
each dimensions from where dataset starts to read into OutputArray.
|
||||
@param dims_counts each array member specify the amount over dataset's each
|
||||
dimensions of dataset to read into OutputArray.
|
||||
|
||||
Reads out Mat object reflecting the stored dataset.
|
||||
|
||||
@note If hdf5 file does not exist an exception will be thrown. Use hlexists() to check dataset presence.
|
||||
It is thread safe.
|
||||
|
||||
- Example below reads a dataset:
|
||||
@code{.cpp}
|
||||
// open hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// blank Mat container
|
||||
cv::Mat H;
|
||||
// read hibert dataset
|
||||
h5io->read( H, "hilbert" );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
|
||||
- Example below perform read of 3x5 submatrix from second row and third element.
|
||||
@code{.cpp}
|
||||
// open hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// blank Mat container
|
||||
cv::Mat H;
|
||||
int offset[2] = { 1, 2 };
|
||||
int counts[2] = { 3, 5 };
|
||||
// read hibert dataset
|
||||
h5io->read( H, "hilbert", offset, counts );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
*/
|
||||
CV_WRAP virtual void dsread( OutputArray Array, String dslabel,
|
||||
const int* dims_offset = NULL, const int* dims_counts = NULL ) const = 0;
|
||||
|
||||
/** @brief Fetch keypoint dataset size
|
||||
@param kplabel specify the hdf5 dataset label to be measured.
|
||||
@param dims_flag will fetch dataset dimensions on H5_GETDIMS, and dataset maximum dimensions on H5_GETMAXDIMS.
|
||||
|
||||
Returns size of keypoints dataset.
|
||||
|
||||
@note Resulting size will match the amount of keypoints. By default H5_GETDIMS will return actual dataset dimension.
|
||||
Using H5_GETMAXDIM flag will get maximum allowed dimension which normally match actual dataset dimension but can hold
|
||||
H5_UNLIMITED value if dataset was prepared in **unlimited** mode. It can be useful to check existing dataset dimension
|
||||
before overwrite it as whole or subset. Trying to write with oversized source data into dataset target will thrown
|
||||
exception.
|
||||
*/
|
||||
CV_WRAP virtual int kpgetsize( String kplabel, int dims_flag = HDF5::H5_GETDIMS ) const = 0;
|
||||
|
||||
/** @brief Create and allocate special storage for cv::KeyPoint dataset.
|
||||
@param size declare fixed number of KeyPoints
|
||||
@param kplabel specify the hdf5 dataset label, any existing dataset with the same label will be overwritten.
|
||||
@param compresslevel specify the compression level 0-9 to be used, by default H5_NONE means none at all.
|
||||
@param chunks each array member specify chunking sizes to be used for block i/o,
|
||||
by default H5_NONE means none at all.
|
||||
@note If the dataset already exists an exception will be thrown. Existence of the dataset can be checked
|
||||
using hlexists().
|
||||
|
||||
- See example below that creates space for 100 keypoints in the dataset:
|
||||
@code{.cpp}
|
||||
// open hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
if ( ! h5io->hlexists( "keypoints" ) )
|
||||
h5io->kpcreate( 100, "keypoints" );
|
||||
else
|
||||
printf("DS already created, skipping\n" );
|
||||
@endcode
|
||||
|
||||
@note A value of H5_UNLIMITED for **size** means **unlimited** keypoints, thus is possible to expand anytime such
|
||||
dataset by adding or inserting. Presence of H5_UNLIMITED **require** to define custom chunking. No default chunking
|
||||
will be defined in unlimited scenario since default size on that dimension will be zero, and will grow once dataset
|
||||
is written. Writing into dataset that have H5_UNLIMITED on some of its dimension requires kpinsert() that allow
|
||||
growth on unlimited dimension instead of kpwrite() that allows to write only in predefined data space.
|
||||
|
||||
- See example below that creates unlimited space for keypoints chunking size of 100 but no compression:
|
||||
@code{.cpp}
|
||||
// open hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
if ( ! h5io->hlexists( "keypoints" ) )
|
||||
h5io->kpcreate( cv::hdf::HDF5::H5_UNLIMITED, "keypoints", cv::hdf::HDF5::H5_NONE, 100 );
|
||||
else
|
||||
printf("DS already created, skipping\n" );
|
||||
@endcode
|
||||
*/
|
||||
virtual void kpcreate( const int size, String kplabel,
|
||||
const int compresslevel = H5_NONE, const int chunks = H5_NONE ) const = 0;
|
||||
|
||||
/** @brief Write or overwrite list of KeyPoint into specified dataset of hdf5 file.
|
||||
@param keypoints specify keypoints data list to be written.
|
||||
@param kplabel specify the target hdf5 dataset label.
|
||||
@param offset specify the offset location on dataset from where keypoints will be (over)written into dataset.
|
||||
@param counts specify the amount of keypoints that will be written into dataset.
|
||||
|
||||
Writes vector<KeyPoint> object into targeted dataset.
|
||||
|
||||
@note If dataset is not created and does not exist it will be created **automatically**. It is thread safe but
|
||||
it is recommended that writes to happen over separate non overlapping regions. Multiple datasets can be written
|
||||
inside single hdf5 file.
|
||||
|
||||
- Example below writes a 100 keypoints into a dataset. No dataset precreation required. If routine is called multiple
|
||||
times dataset will be just overwritten:
|
||||
@code{.cpp}
|
||||
// generate 100 dummy keypoints
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
for(int i = 0; i < 100; i++)
|
||||
keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) );
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// write / overwrite dataset
|
||||
h5io->kpwrite( keypoints, "keypoints" );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
|
||||
- Example below uses smaller set of 50 keypoints and writes into compressed space of 100 keypoints optimised by 10 chunks.
|
||||
Same keypoint set is written three times, first into first half (0->50) and at second half (50->75) then into remaining slots
|
||||
(75->99) of data space using offset and count parameters to settle the window for write access.If routine is called multiple times
|
||||
dataset will be just overwritten:
|
||||
@code{.cpp}
|
||||
// generate 50 dummy keypoints
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
for(int i = 0; i < 50; i++)
|
||||
keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) );
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// create maximum compressed space of size 100 with chunk size 10
|
||||
h5io->kpcreate( 100, "keypoints", 9, 10 );
|
||||
// write into first half
|
||||
h5io->kpwrite( keypoints, "keypoints", 0 );
|
||||
// write first 25 keypoints into second half
|
||||
h5io->kpwrite( keypoints, "keypoints", 50, 25 );
|
||||
// write first 25 keypoints into remained space of second half
|
||||
h5io->kpwrite( keypoints, "keypoints", 75, 25 );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
*/
|
||||
virtual void kpwrite( const vector<KeyPoint> keypoints, String kplabel,
|
||||
const int offset = H5_NONE, const int counts = H5_NONE ) const = 0;
|
||||
|
||||
/** @brief Insert or overwrite list of KeyPoint into specified dataset and autoexpand dataset size if **unlimited** property allows.
|
||||
@param keypoints specify keypoints data list to be written.
|
||||
@param kplabel specify the target hdf5 dataset label.
|
||||
@param offset specify the offset location on dataset from where keypoints will be (over)written into dataset.
|
||||
@param counts specify the amount of keypoints that will be written into dataset.
|
||||
|
||||
Writes vector<KeyPoint> object into targeted dataset and **autoexpand** dataset dimension if allowed.
|
||||
|
||||
@note Unlike kpwrite(), datasets are **not** created **automatically**. If dsinsert() happen over outer region of dataset
|
||||
and dataset has been created in **unlimited** mode then dataset is expanded, otherwise exception is thrown. To create datasets
|
||||
with **unlimited** property see kpcreate() and the optional H5_UNLIMITED flag at creation time. It is not thread safe over same
|
||||
dataset but multiple datasets can be merged inside single hdf5 file.
|
||||
|
||||
- Example below creates **unlimited** space for keypoints storage, and inserts a list of 10 keypoints ten times into that space.
|
||||
Final dataset will have 100 keypoints. Chunks size is 10 just optimized against list of keypoints. If routine is called multiple
|
||||
times dataset will be just overwritten:
|
||||
@code{.cpp}
|
||||
// generate 10 dummy keypoints
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
for(int i = 0; i < 10; i++)
|
||||
keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) );
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// create unlimited size space with chunk size of 10
|
||||
h5io->kpcreate( cv::hdf::HDF5::H5_UNLIMITED, "keypoints", -1, 10 );
|
||||
// insert 10 times same 10 keypoints
|
||||
for(int i = 0; i < 10; i++)
|
||||
h5io->kpinsert( keypoints, "keypoints", i * 10 );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
*/
|
||||
virtual void kpinsert( const vector<KeyPoint> keypoints, String kplabel,
|
||||
const int offset = H5_NONE, const int counts = H5_NONE ) const = 0;
|
||||
|
||||
/** @brief Read specific keypoint dataset from hdf5 file into vector<KeyPoint> object.
|
||||
@param keypoints vector<KeyPoint> container where data reads will be returned.
|
||||
@param kplabel specify the source hdf5 dataset label.
|
||||
@param offset specify the offset location over dataset from where read starts.
|
||||
@param counts specify the amount of keypoints from dataset to read.
|
||||
|
||||
Reads out vector<KeyPoint> object reflecting the stored dataset.
|
||||
|
||||
@note If hdf5 file does not exist an exception will be thrown. Use hlexists() to check dataset presence.
|
||||
It is thread safe.
|
||||
|
||||
- Example below reads a dataset containing keypoints starting with second entry:
|
||||
@code{.cpp}
|
||||
// open hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// blank KeyPoint container
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
// read keypoints starting second one
|
||||
h5io->kpread( keypoints, "keypoints", 1 );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
|
||||
- Example below perform read of 3 keypoints from second entry.
|
||||
@code{.cpp}
|
||||
// open hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// blank KeyPoint container
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
// read three keypoints starting second one
|
||||
h5io->kpread( keypoints, "keypoints", 1, 3 );
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
*/
|
||||
virtual void kpread( vector<KeyPoint>& keypoints, String kplabel,
|
||||
const int offset = H5_NONE, const int counts = H5_NONE ) const = 0;
|
||||
|
||||
};
|
||||
|
||||
/** @brief Open or create hdf5 file
|
||||
@param HDF5Filename specify the HDF5 filename.
|
||||
|
||||
Returns pointer to the hdf5 object class
|
||||
|
||||
@note If hdf5 file does not exist it will be created. Any operations except dscreate() functions on object
|
||||
will be thread safe. Multiple datasets can be created inside single hdf5 file, and can be accessed
|
||||
from same hdf5 object from multiple instances as long read or write operations are done over
|
||||
non-overlapping regions of dataset. Single hdf5 file also can be opened by multiple instances,
|
||||
reads and writes can be instantiated at the same time as long non-overlapping regions are involved. Object
|
||||
is released using close().
|
||||
|
||||
- Example below open and then release the file.
|
||||
@code{.cpp}
|
||||
// open / autocreate hdf5 file
|
||||
cv::Ptr<cv::hdf::HDF5> h5io = cv::hdf::open( "mytest.h5" );
|
||||
// ...
|
||||
// release
|
||||
h5io->close();
|
||||
@endcode
|
||||
|
||||

|
||||
|
||||
- Text dump (3x3 Hilbert matrix) of hdf5 dataset using **h5dump** tool:
|
||||
@code{.txt}
|
||||
$ h5dump test.h5
|
||||
HDF5 "test.h5" {
|
||||
GROUP "/" {
|
||||
DATASET "hilbert" {
|
||||
DATATYPE H5T_ARRAY { [2] H5T_IEEE_F64LE }
|
||||
DATASPACE SIMPLE { ( 3, 3 ) / ( 3, 3 ) }
|
||||
DATA {
|
||||
(0,0): [ 1, -1 ], [ 0.5, -0.5 ], [ 0.333333, -0.333333 ],
|
||||
(1,0): [ 0.5, -0.5 ], [ 0.333333, -0.333333 ], [ 0.25, -0.25 ],
|
||||
(2,0): [ 0.333333, -0.333333 ], [ 0.25, -0.25 ], [ 0.2, -0.2 ]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@endcode
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<HDF5> open( String HDF5Filename );
|
||||
|
||||
//! @}
|
||||
|
||||
} // end namespace hdf
|
||||
} // end namespace cv
|
||||
#endif // _OPENCV_HDF5_HPP_
|
1051
modules/hdf/src/hdf5.cpp
Normal file
1051
modules/hdf/src/hdf5.cpp
Normal file
File diff suppressed because it is too large
Load Diff
43
modules/hdf/src/precomp.hpp
Normal file
43
modules/hdf/src/precomp.hpp
Normal file
@@ -0,0 +1,43 @@
|
||||
/*********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright (c) 2015
|
||||
* Balint Cristian <cristian dot balint at gmail dot com>
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above
|
||||
* copyright notice, this list of conditions and the following
|
||||
* disclaimer in the documentation and/or other materials provided
|
||||
* with the distribution.
|
||||
* * Neither the name of the copyright holders nor the names of its
|
||||
* contributors may be used to endorse or promote products derived
|
||||
* from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*********************************************************************/
|
||||
|
||||
#ifndef __OPENCV_HDF_PRECOMP_H__
|
||||
#define __OPENCV_HDF_PRECOMP_H__
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "opencv2/hdf.hpp"
|
||||
#endif
|
Reference in New Issue
Block a user