mirror of
https://github.com/opencv/opencv_contrib.git
synced 2025-10-17 15:26:00 +08:00
cv::Mat -> Mat
This commit is contained in:
@@ -56,16 +56,16 @@ namespace ppf_match_3d
|
||||
* and whether it should be loaded or not
|
||||
* \return Returns the matrix on successfull load
|
||||
*/
|
||||
CV_EXPORTS cv::Mat loadPLYSimple(const char* fileName, int withNormals);
|
||||
CV_EXPORTS Mat loadPLYSimple(const char* fileName, int withNormals);
|
||||
|
||||
/**
|
||||
* \brief Write a point cloud to PLY file
|
||||
* \param [in] fileName The PLY model file to write
|
||||
*/
|
||||
CV_EXPORTS void writePLY(cv::Mat PC, const char* fileName);
|
||||
CV_EXPORTS void writePLY(Mat PC, const char* fileName);
|
||||
|
||||
cv::Mat samplePCUniform(cv::Mat PC, int sampleStep);
|
||||
cv::Mat samplePCUniformInd(cv::Mat PC, int sampleStep, std::vector<int>& indices);
|
||||
Mat samplePCUniform(Mat PC, int sampleStep);
|
||||
Mat samplePCUniformInd(Mat PC, int sampleStep, std::vector<int>& indices);
|
||||
|
||||
/**
|
||||
* Sample a point cloud using uniform steps
|
||||
@@ -79,13 +79,13 @@ cv::Mat samplePCUniformInd(cv::Mat PC, int sampleStep, std::vector<int>& indices
|
||||
* by the distance to the origin. This parameter enables/disables the use of weighting.
|
||||
* \return Sampled point cloud
|
||||
*/
|
||||
CV_EXPORTS cv::Mat samplePCByQuantization(cv::Mat pc, float xrange[2], float yrange[2], float zrange[2], float sample_step_relative, int weightByCenter=0);
|
||||
CV_EXPORTS Mat samplePCByQuantization(Mat pc, float xrange[2], float yrange[2], float zrange[2], float sample_step_relative, int weightByCenter=0);
|
||||
|
||||
void computeBboxStd(cv::Mat pc, float xRange[2], float yRange[2], float zRange[2]);
|
||||
void computeBboxStd(Mat pc, float xRange[2], float yRange[2], float zRange[2]);
|
||||
|
||||
void* indexPCFlann(cv::Mat pc);
|
||||
void* indexPCFlann(Mat pc);
|
||||
void destroyFlann(void* flannIndex);
|
||||
void queryPCFlann(void* flannIndex, cv::Mat& pc, cv::Mat& indices, cv::Mat& distances);
|
||||
void queryPCFlann(void* flannIndex, Mat& pc, Mat& indices, Mat& distances);
|
||||
|
||||
/**
|
||||
* Mostly for visualization purposes. Normalizes the point cloud in a Hartley-Zissermann
|
||||
@@ -96,10 +96,10 @@ void queryPCFlann(void* flannIndex, cv::Mat& pc, cv::Mat& indices, cv::Mat& dist
|
||||
* @param [in] scale The scale after normalization. Default to 1.
|
||||
* \return Normalized point cloud
|
||||
*/
|
||||
CV_EXPORTS cv::Mat normalize_pc(cv::Mat pc, float scale);
|
||||
CV_EXPORTS Mat normalize_pc(Mat pc, float scale);
|
||||
|
||||
cv::Mat normalizePCCoeff(cv::Mat pc, float scale, float* Cx, float* Cy, float* Cz, float* MinVal, float* MaxVal);
|
||||
cv::Mat transPCCoeff(cv::Mat pc, float scale, float Cx, float Cy, float Cz, float MinVal, float MaxVal);
|
||||
Mat normalizePCCoeff(Mat pc, float scale, float* Cx, float* Cy, float* Cz, float* MinVal, float* MaxVal);
|
||||
Mat transPCCoeff(Mat pc, float scale, float Cx, float Cy, float Cz, float MinVal, float MaxVal);
|
||||
|
||||
/**
|
||||
* Transforms the point cloud with a given a homogeneous 4x4 pose matrix (in double precision)
|
||||
@@ -109,7 +109,7 @@ cv::Mat transPCCoeff(cv::Mat pc, float scale, float Cx, float Cy, float Cz, floa
|
||||
* @param [in] Pose 4x4 pose matrix, but linearized in row-major form.
|
||||
* \return Transformed point cloud
|
||||
*/
|
||||
CV_EXPORTS cv::Mat transformPCPose(cv::Mat pc, double Pose[16]);
|
||||
CV_EXPORTS Mat transformPCPose(Mat pc, double Pose[16]);
|
||||
|
||||
/**
|
||||
* Generate a random 4x4 pose matrix
|
||||
@@ -123,7 +123,7 @@ CV_EXPORTS void getRandomPose(double Pose[16]);
|
||||
* @param [in] scale Input scale of the noise. The larger the scale, the more
|
||||
* noisy the output
|
||||
*/
|
||||
CV_EXPORTS cv::Mat addNoisePC(cv::Mat pc, double scale);
|
||||
CV_EXPORTS Mat addNoisePC(Mat pc, double scale);
|
||||
|
||||
/**
|
||||
* \brief Compute the normals of an arbitrary point cloud
|
||||
@@ -140,7 +140,7 @@ CV_EXPORTS cv::Mat addNoisePC(cv::Mat pc, double scale);
|
||||
* If PCNormals is provided to be an Nx6 matrix, then no new allocation
|
||||
* is made, instead the existing memory is overwritten.
|
||||
*/
|
||||
CV_EXPORTS int computeNormalsPC3d(const cv::Mat& PC, cv::Mat& PCNormals, const int NumNeighbors, const bool FlipViewpoint, const double viewpoint[3]);
|
||||
CV_EXPORTS int computeNormalsPC3d(const Mat& PC, Mat& PCNormals, const int NumNeighbors, const bool FlipViewpoint, const double viewpoint[3]);
|
||||
} // namespace ppf_match_3d
|
||||
} // namespace cv
|
||||
|
||||
|
@@ -206,7 +206,7 @@ void destroyFlann(void* flannIndex)
|
||||
}
|
||||
|
||||
// For speed purposes this function assumes that PC, Indices and Distances are created with continuous structures
|
||||
void queryPCFlann(void* flannIndex, cv::Mat& pc, cv::Mat& indices, cv::Mat& distances)
|
||||
void queryPCFlann(void* flannIndex, Mat& pc, Mat& indices, Mat& distances)
|
||||
{
|
||||
Mat obj_32f;
|
||||
pc.colRange(0,3).copyTo(obj_32f);
|
||||
@@ -518,11 +518,11 @@ Mat transformPCPose(Mat pc, double Pose[16])
|
||||
|
||||
Mat genRandomMat(int rows, int cols, double mean, double stddev, int type)
|
||||
{
|
||||
cv::Mat meanMat = mean*cv::Mat::ones(1,1,type);
|
||||
cv::Mat sigmaMat= stddev*cv::Mat::ones(1,1,type);
|
||||
cv::RNG rng(time(0));
|
||||
cv::Mat matr(rows, cols,type);
|
||||
rng.fill(matr, cv::RNG::NORMAL, meanMat, sigmaMat);
|
||||
Mat meanMat = mean*Mat::ones(1,1,type);
|
||||
Mat sigmaMat= stddev*Mat::ones(1,1,type);
|
||||
RNG rng(time(0));
|
||||
Mat matr(rows, cols,type);
|
||||
rng.fill(matr, RNG::NORMAL, meanMat, sigmaMat);
|
||||
|
||||
return matr;
|
||||
}
|
||||
|
Reference in New Issue
Block a user